Mathematics of Finance B.Com (P) - Year 1, Sections B & C Prepared By: Ms. Hansika Khurana #### Mathematics of Finance - Topics covered so far in class: - 1. Simple Interest - 2. Compound Interest - Nominal and Effective Rates of Interest - 4. Discount - 5. Present Value - 6. Equation of Value - Topics left: - 1. Depreciation #### Let's Revise.. - Present Value - While planning for the future, we may want to know how much to invest now to be able to save an amount "S" at a later date. - Therefore, we want to find out the *principal* originally invested. - Eg: I want to save Rs.6,00,000 for my education, which I will need after 5 years. How much should I put in the bank today, if the interest is compounded at 6% annually? - The amount that I will put in the bank today is called Present Value #### Present Value Formula | 49 | Manufact delated | |----|--| | | Present value of "s' due "n' reside | | | fresent value of "s' due "n" periods
from now, at a rate "i" of per period | | | P= S(1+i)-" | | | P = Present value | | | S = Amount from | | | i = rate of interest perperiod | | | i = rate of interest per period M = mumber of periods | | | A PART OF THE PROPERTY OF THE PART | | | | | | Present Value of "s" due at the end of "t" years at a rate "r" of compounded continuously | | | "t" years at a rate "r" ef. compounded | | | certimously | | | | | | P=Se-rt | | | P= Present value | | | S = Sum / Amount | | | r= Annual vate of interest | | | t = number of years | | | DO CONTRACTOR OF THE PARTY T | | | | ### **Equation of Value** - We obtain this by equating the sum of values on one date with another set of values on another date. - The date on which these values are equal is called the *Focal Date* or *Comparison Date*. - Focal Date can be decided by the lender or the borrower ### For Example... - Mr. X has an outstanding loan of Rs.10,000 which is due 5 years from now. - He decides to repay this loan in installments by paying Rs.2,000 today, Rs.4000 after 3 years and the balance after 6 years @ 6% per annum. - If the lender decides the focal date to be 6 years from now. - The equation of value will mean that the value of the old obligation of Rs.10,000 on the focal date (i.e. 6 years from now) = value of Rs. 2,000 on focal date + value of Rs.4,000 on focal date + value of remaining amount on focal date. - Solution on next page - Also, refer to video sent on class group for full explanation EQUATION OF VALUE (EXAMPLE FROM PAT) Let focal date = byts from now = 61. pa. Let balance paid = 3x val. of old ob. en F.D. obligate old Obligation JOBO (140.06) 710,000 Q 10,000 (1+0.06) end of 5.7%. \$ 2000 due 4000 (140.06) \$4000 6 rig 2x @ end 10,000 (1+0.06) = 2000 (1+0.06) +4900 (1+0.06)3 2=2999 10,000 (1.06) = 2000 (1.06) + 4000 (1.06) + x 10,600 = 2000 (1.4185) + 4000 (1.1910) + x : x = ₹2999 Q. A debt of Rs.2000 due in 3 years and Rs.3000 due in 7 years is to repaid by a single payment of Rs.1000 now and two equal payments which are due 1 year from now and 4 years from now. If the interest rate is 6% compounded annually, how much should each of the payments be? - Let the value of each payment be Rs.x - Let the Focal Date be 4 years from now - Rate of interest is 6% p.a. | Old Obligation | Value of Old Obligation on Focal date | New Obligation | Value of New
Obligation on Focal
Date | |------------------------|--|--------------------|---| | Rs. 2000 after 3 years | 2000(1+0.06) ¹ | Rs. 1000 today | 1000(1+0.06)4 | | Rs. 3000 after 7 years | 3000(1+0.06)-3 | Rs.x after 1 year | $X(1+0.06)^3$ | | | This is 3000(1+0.06) ⁻³ because the debt is due 7 years from now but focal date is 4 years from now. We will go back 3 years to reach focal date. | Rs.x after 4 years | X | - Equation of Value will be given by: - $2000(1+0.06)^1 + 3000(1+0.06)^{-3} = 1000(1+0.06)^4 + X(1+0.06)^3 + X$ - X = Rs. 1541.02 (value of each installment) # Depreciation - Refers to the annual wear and tear of machinery, equipment, etc, due to use and passage of time. - It is actually a decrease in the value of an asset due to the above mentioned reasons. - Depreciation can be calculated by the methods given below: - a. Sum of the Years' Digits Method - b. Straight Line Method - c. Diminishing Balance Method # Sum of the Years' Digits Method An asset costing Rs.30,000 is expected to have no scrap value and a useful life of 5 years. Find annual depreciation using sum of the years' digits method and prepare a depreciation schedule. - Refer to next slide for solution - Refer video sent on class group for full explanation #### Solution... | | Sum | al was d | igits mell | od_ | * | |--------|--|-------------|---------------|---------|-----------------| | | AVOIVI | of grows as | 0 | | | | Years | - 5 | ure Jan a | | | | | Value | lust of | machine - | - ₹30,000 | | | | Scrop. | NIL | 45.3(19 | | | | | Year | Years in | Fraction | Annual | | Accumulated | | 1004 | 5 | of dep' | 5/15 x 30,000 | =10,000 | 16,000 | | 2 | 4 | 415 | 4/15 X 30,000 | | 10,000+8000=180 | | 3 | 3 | 3/15 | | 6000 | 24000 | | 4 | 2 | 2/15 | | 4000 | 28 000 | | 5 | Fig. | 1/15 | | 2000 | 30000 | | | 15 | | | | | | | The Park of Pa | | | | | #### SLM – Straight Line Method DBM – Diminishing Balance Method | # DEPRECIATION: C- eniginal lost- | |--| | S-Scrap Pose O | | W- Total dep ² | | D-Annual dep | | n-useful lige! | | D O | | SLM: D = C - S = W | | n n | | DBM: r=> voustant rate of dep= (40 form) | | DBM: $r=$ voustant rate of dep= [90 form) a end of 144 yr. Dep= cr $Bv=C-Cr=c(1-r)$ 2^{Nd} yr $Cr(1-r)$ $Cf(1-r)-Cr(1-r)$ | | 2 nd yr cr(1-r) - cr(1-r) | | $= C(1-r)^2$ | # Straight Line Method • A machine costing Rs.30,000 is expected to have a useful life of 5 years and scrap value of Rs.5,000. Find annual depreciation using straight line method and prepare depreciation schedule. Cost(C) = 30000 Depreciation (D) = C-S/n Scrap (S) = 5000 D = (30000-5000)/5 Useful Life (n) = 5 D = 5000 | Years | Annual
Depreciation | Accumulated Depreciation | Book Value at end of Year | |-------|------------------------|--------------------------|-----------------------------| | 1 | 5000 | 5000 | 30000 - 5000 = 25000 | | 2 | 5000 | 10000 | 25000 - 5000 = 20000 | | 3 | 5000 | 15000 | 20000 - 5000 = 15000 | | 4 | 5000 | 20000 | 15000 - 5000 = 10000 | | 5 | 5000 | 25000 | 10000 - 5000 = 5000 (scrap) | # Diminishing Balance Method / Reducing Balance Method / Written Down Value Method - Depreciation is calculated on the book value of the asset - Under this method, depreciation is a constant percentage of BV - The asset is depreciated till the end of its estimated useful life - In the end, we are left with scrap value, if any - Refer next slide for formula - Refer video sent on class group for explanation Dep² on WDV $$C = lost$$ of asset $Y = annual rate$ of dep² $$\frac{lost}{B.V.} \quad Dep^{2} \quad B.V. @ uol$$ $$\frac{lost}{B.V.} \quad Dep^{2} \quad \frac{lost}{Allower} \quad C - Cr$$ $$= C(1-r)$$ 2nd yr. $C(1-r) \cdot C(1-r) \cdot r \quad C(1-r) - C(1-r) \cdot r$ $$= c(1-r)(1-r)$$ $$= c(1-r)^{2}$$ $$c(1-r)^{3}$$ $$S = C(1-r)^{n}$$ A machine costing Rs.70000 depreciates at a constant rate of 6%. What is the depreciation charge for the 9th year? If the estimated life of the machine is 10 years, determine the scrap value of the machine | | · | |-----|--| | | ii) loop value of washing | | | (not 4 Machine (c) = \$ 70,000 | | | Cost of Machine (C) = \$ 70,000 Rate of Depresiation (r) = 6% = 0.06 Estimated life of marchine = 10 years | | | Estimated life of marchine = 10 years | | | | | (| bepreciation charge for 9"year = Bept Value of machine @ end of 8th year - Value of machine @ end of 9th year | | | = Bept Value of machine a und | | | of 8th year | | | - Value of machine a end | | 133 | e quar year | | | he know that S= C(1-r)" | | | NO WHOM THE SEC(1) | | | Val. of mach @ end = 70000 (1-0.06) 9 of 9 m year = 70,000 (0.5729) = 40,103 | | | Vai. y mach Q ind = 70000 (1-0.06) 9 of 9 th year = 70,000 (0.5729) | | | = 40,103 | | | | | | Val. 4 mach @ end . 40000 (1-0.06)8 | | | Val. 4 mach @ end . 70000 (1-0.06)8 of 8 M year = 70000 (0.6095) = 42,665 | | | 12,003 | | | : Dep? Marge for 9th Year = 42,665-40,10 | | | :. Dep? Charge for 9th Year = 42,665-40,10: | | | - book val. of mach. @ end of 8th year. | | | - Book val of wach . Q end of 9 th year. | | | | A machine depreciates at 10% per annum for the first two years and then at 7% per annum for the next 3 years on diminishing balance. If the initial value of the machine is Rs.10000, find the depreciated value of the machine at the end of the 5th year. Also, find the average rate of depreciation #### Depreciated Value of the machine at the end of the 5th year $$S = C (1 - r)^{n}$$ $$= 10000 (1 - 0.10)^{2} (1 - 0.07)^{3}$$ $$= 10000 (0.90)^{2} (0.93)^{3}$$ $$= 10000 (0.81) (0.804357)$$ $$= Rs. 6515.29$$ #### Average rate of Depreciation Let the average rate of depreciation be "r" % Scrap Value (as calculated above) = Rs. 6514.83 $$S = C (1 - r)^n$$ $6515.29 = 10000 (1 - r)^5$ $6515.29/10000 = (1 - r)^5$ Taking log on both sides $$Log (6515.29/10000) = Log [(1 - r)^5]$$ Using properties of Log $$Log (6515.29) - Log (10000) = 5 Log (1 - r)$$ Using Log Tables as taught in Class $$3.4624 - 4.0 = 5 \text{ Log } (1 - r)$$ $-0.5376 = 5 \text{ Log } (1 - r)$ $-0.10752 = \text{Log } (1 - r)$ Using Antilog Tables as taught in class - Kindly practice all unsolved questions given in the book, especially those which have been asked previously in exams. - For any questions or doubts, I will be available on call/message on Thursday during your respective class timings. - Next week's notes on a new chapter will be uploaded soon.