
Econometrics: 
Dummy Variables in Regression Models

Chapter 6 of D.N. Gujarati & Porter + Class Notes

Course : Introductory Econometrics : HC43
B.A. Hons Economics & BBE, Semester IV 

Delhi University 

Course Instructor: 

Siddharth Rathore
Assistant Professor

Economics Department, Gargi College

Siddharth Rathore

Click to Connect :

https://www.instagram.com/the_pink_professor/
https://www.facebook.com/siddharth.rathore007
https://www.linkedin.com/in/siddharth-rathore-43a296141/
https://www.youtube.com/channel/UCmifTTngjxBtwbrplOuTN1w


178

CHAPTER 6
DUMMY VARIABLE
REGRESSION MODELS

In all the linear regression models considered so far the dependent variable Y
and the explanatory variables, the X’s, have been numerical or quantitative. But
this may not always be the case; there are occasions when the explanatory vari-
able(s) can be qualitative in nature. These qualitative variables, often known as
dummy variables, have some alternative names used in the literature, such as
indicator variables, binary variables, categorical variables, and dichotomous variables.
In this chapter we will present several illustrations to show how the dummy
variables enrich the linear regression model. For the bulk of this chapter we will
continue to assume that the dependent variable is numerical.

6.1 THE NATURE OF DUMMY VARIABLES

Frequently in regression analysis the dependent variable is influenced not only
by variables that can be quantified on some well-defined scale (e.g., income,
output, costs, prices, weight, temperature) but also by variables that are basi-
cally qualitative in nature (e.g., gender, race, color, religion, nationality, strikes,
political party affiliation, marital status). For example, some researchers have
reported that, ceteris paribus, female college teachers are found to earn less than
their male counterparts, and, similarly, that the average score of female students
on the math part of the S.A.T. examination is less than their male counterparts
(see Table 2-15, found on the textbook’s Web site). Whatever the reason for this
difference, qualitative variables such as gender should be included among the
explanatory variables when problems of this type are encountered. Of course,
there are other examples that also could be cited.
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CHAPTER SIX: DUMMY VARIABLE REGRESSION MODELS 179

Such qualitative variables usually indicate the presence or absence of a
“quality” or an attribute, such as male or female, black or white, Catholic or
non-Catholic, citizens or non-citizens. One method of “quantifying” these
attributes is by constructing artificial variables that take on values of 0 or 1, 0 in-
dicating the absence of an attribute and 1 indicating the presence (or posses-
sion) of that attribute. For example, 1 may indicate that a person is a female and
0 may designate a male, or 1 may indicate that a person is a college graduate
and 0 that he or she is not, or 1 may indicate membership in the Democratic
party and 0 membership in the Republican party. Variables that assume values
such as 0 and 1 are called dummy variables. We denote the dummy explana-
tory variables by the symbol D rather than by the usual symbol X to emphasize
that we are dealing with a qualitative variable.

Dummy variables can be used in regression analysis just as readily as quan-
titative variables. As a matter of fact, a regression model may contain only
dummy explanatory variables. Regression models that contain only dummy
explanatory variables are called analysis-of-variance (ANOVA) models.
Consider the following example of the ANOVA model:

(6.1)

where Y = annual expenditure on food ($)
Di = 1 if female

= 0 if male

Note that model (6.1) is like the two-variable regression models encountered
previously except that instead of a quantitative explanatory variable X, we have
a qualitative or dummy variable D. As noted earlier, from now on we will use D
to denote a dummy variable.

Assuming that the disturbances ui in model (6.1) satisfy the usual assump-
tions of the classical linear regression model (CLRM), we obtain from model (6.1)
the following:1

Mean food expenditure, males:

(6.2) = B1

 E(Yi|Di = 0) = B1 + B2(0)

Yi = B1 + B2Di + ui

1Since dummy variables generally take on values of 1 or 0, they are nonstochastic; that is, their
values are fixed. And since we have assumed all along that our X variables are fixed in repeated
sampling, the fact that one or more of these X variables are dummies does not create any special
problems insofar as estimation of model (6.1) is concerned. In short, dummy explanatory variables
do not pose any new estimation problems and we can use the customary OLS method to estimate
the parameters of models that contain dummy explanatory variables.
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Mean food expenditure, females:

(6.3)

From these regressions we see that the intercept term B1 gives the average or
mean food expenditure of males (that is, the category for which the dummy
variable gets the value of zero) and that the “slope” coefficient B2 tells us by
how much the mean food expenditure of females differs from the mean food
expenditure of males; (B1 + B2) gives the mean food expenditure for females.
Since the dummy variable takes values of 0 and 1, it is not legitimate to call B2
the slope coefficient, since there is no (continuous) regression line involved
here. It is better to call it the differential intercept coefficient because it tells by
how much the value of the intercept term differs between the two categories. In
the present context, the differential intercept term tells by how much the mean
food expenditure of females differs from that of males.

A test of the null hypothesis that there is no difference in the mean food ex-
penditure of the two sexes (i.e., B2 = 0) can be made easily by running regres-
sion (6.1) in the usual ordinary least squares (OLS) manner and finding out
whether or not on the basis of the t test the computed b2 is statistically
significant.

Example 6.1. Annual Food Expenditure of Single Male and Single Female
Consumers

Table 6-1 gives data on annual food expenditure ($) and annual after-tax
income ($) for males and females for the year 2000 to 2001.

From the data given in Table 6-1, we can construct Table 6-2.
For the moment, just concentrate on the first three columns of this table,
which relate to expenditure on food, the dummy variable taking the value of
1 for females and 0 for males, and after-tax income.

 = B1 + B2

 E(Yi|Di = 1) = B1 + B2(1)

180 PART ONE: THE LINEAR REGRESSION MODEL

FOOD EXPENDITURE IN RELATION TO AFTER-TAX INCOME, SEX, AND AGE

Food expenditure, After-tax income, Food expenditure, After-tax income,
Age female ($) female ($) male ($) male ($)

25 1983 11557 2230 11589
25–34 2987 29387 3757 33328
35–44 2993 31463 3821 36151
45–54 3156 29554 3291 35448
55–64 2706 25137 3429 32988
65 2217 14952 2533 20437

Note: The food expenditure and after-tax income data are averages based on the actual number of people in
various age groups. The actual numbers run into the thousands.

Source: Consumer Expenditure Survey, Bureau of Labor Statistics, http://Stats.bls.gov/Cex/CSXcross.htm.

7

6

TABLE 6-1
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CHAPTER SIX: DUMMY VARIABLE REGRESSION MODELS 181

Regressing food expenditure on the gender dummy variable, we obtain
the following results.

se = (233.0446)(329.5749) (6.4)

t = (13.6318) (-1.5267)

where Y = food expenditure ($) and D = 1 if female, 0 if male.

As these results show, the mean food expenditure of males is and
that of females is (3176.833 - 503.1667) = 2673.6663 or about $2,674. But what
is interesting to note is that the estimated Di is not statistically significant, for
its t value is only about -1.52 and its p value is about 15 percent. This means
that although the numerical values of the male and female food expenditures
are different, statistically there is no significant difference between the two
numbers. Does this finding make practical (as opposed to statistical) sense?
We will soon find out.

We can look at this problem in a different perspective. If you simply take the
averages of the male and female food expenditure figures separately, you will
see that these averages are $3176.833 and $2673.6663. These numbers are the
same as those that we obtained on the basis of regression (6.4). What this means
is that the dummy variable regression (6.4) is simply a device to find out if two mean
values are different. In other words, a regression on an intercept and a dummy
variable is a simple way of finding out if the mean values of two groups differ.
If the dummy coefficient B2 is statistically significant (at the chosen level of

L$3,177

r2
= 0.1890

YNi = 3176.833 - 503.1667Di

FOOD EXPENDITURE IN RELATION TO AFTER-TAX INCOME AND SEX

Observation Food expenditure After-tax income Sex

1 1983.000 11557.00 1
2 2987.000 29387.00 1
3 2993.000 31463.00 1
4 3156.000 29554.00 1
5 2706.000 25137.00 1
6 2217.000 14952.00 1
7 2230.000 11589.00 0
8 3757.000 33328.00 0
9 3821.000 36151.00 0

10 3291.000 35448.00 0
11 3429.000 32988.00 0
12 2533.000 20437.00 0

Notes: Food expenditure = Expenditure on food in dollars.
After-tax income = After-tax income in dollars.
Sex = 1 if female, 0 if male.
Source: Extracted from Table 10-1.

TABLE 6-2
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significance level), we say that the two means are statistically different. If it is
not statistically significant, we say that the two means are not statistically sig-
nificant. In our example, it seems they are not.

Notice that in the present example the dummy variable “sex” has two cate-
gories. We have assigned the value of 1 to female consumers and the value of 0
to male consumers. The intercept value in such an assignment represents the
mean value of the category that gets the value of 0, or male, in the present case.
We can therefore call the category that gets the value of 0 the base, or reference,
or benchmark, or comparison, category. To compute the mean value of food ex-
penditure for females, we have to add the value of the coefficient of the dummy
variable to the intercept value, which represents food expenditure of females, as
shown before.

A natural question that arises is: Why did we choose male as the reference
category and not female? If we have only two categories, as in the present
instance, it does not matter which category gets the value of 1 and which gets
the value of 0. If you want to treat female as the reference category (i.e., it gets
the value of 0), Eq. (6.4) now becomes:

se = (233.0446) (329.5749) (6.5)

t = (11.4227) (1.5267)

where Di = 1 for male and 0 for female.
In either assignment of the dummy variable, the mean food consumption

expenditure of the two sexes remains the same, as it should. Comparing
Equations (6.4) and (6.5), we see the r2 values remain the same, and the absolute
value of the dummy coefficients and their standard errors remain the same. The
only change is in the numerical value of the intercept term and its t value.

Another question: Since we have two categories, why not assign two dum-
mies to them? To see why this is inadvisable, consider the following model:

(6.6)

where Y is expenditure on food, D2 = 1 for female and 0 for male, and D3 = 1 for
male and 0 for female. This model cannot be estimated because of perfect
collinearity (i.e., perfect linear relationship) between D2 and D3. To see this
clearly, suppose we have a sample of two females and three males. The data
matrix will look something like the following.

Intercept D2 D3

Male Y1 1 0 1
Male Y2 1 0 1
Female Y3 1 1 0
Male Y4 1 0 1
Female Y5 1 1 0

Yi = B1 + B2D2i + B3Di + ui

r2
= 0.1890

YNi = 2673.667 + 503.1667Di

182 PART ONE: THE LINEAR REGRESSION MODEL
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CHAPTER SIX: DUMMY VARIABLE REGRESSION MODELS 183

The first column in this data matrix represents the common intercept term, B1. It is
easy to verify that D2 = (1 - D3) or D3 = (1 - D2); that is, the two dummy variables
are perfectly collinear. Also, if you add up columns D2 and D3, you will get the first
column of the data matrix. In any case, we have the situation of perfect collinear-
ity. As we noted in Chapter 3, in cases of perfect collinearity among explanatory
variables, it is not possible to obtain unique estimates of the parameters.

There are various ways to mitigate the problem of perfect collinearity. If a
model contains the (common) intercept, the simplest way is to assign the dum-
mies the way we did in model (6.4), namely, to use only one dummy if a qualita-
tive variable has two categories, such as sex. In this case, drop the column D2 or D3
in the preceding data matrix. The general rule is: If a model has the common intercept,
B1, and if a qualitative variable has m categories, introduce only (m - 1) dummy variables.
In our example, sex has two categories, hence we introduced only a single dummy
variable. If this rule is not followed, we will fall into what is known as the dummy
variable trap, that is, the situation of perfect collinearity or multicollinearity, if
there is more than one perfect relationship among the variables.2

Example 6.2. Union Membership and Right-to-Work Laws

Several states in the United States have passed right-to-work laws that prohibit
union membership as a prerequisite for employment and collective bargain-
ing. Therefore, we would expect union membership to be lower in those
states that have such laws compared to those states that do not. To see if this
is the case, we have collected the data shown in Table 6-3. For now concen-
trate only on the variable PVT (% of private sector employees in trade unions
in 2006) and RWL, a dummy that takes a value of 1 if a state has a right-to-
work law and 0 if a state does not have such a law. Note that we are assign-
ing one dummy to distinguish the right- and non-right-to-work-law states to
avoid the dummy variable trap.

The regression results based on the data for 50 states and the District of
Columbia are as follows:

se = (0.758) (1.181)

t = (20.421)* (-6.062)* (6.7)

*p values are extremely small

Note: RWL = 1 for right-to-work-law states

In the states that do not have right-to-work laws, the average union
membership is about 15.5 percent. But in those states that have such laws, the

r2
= 0.429

PVTi = 15.480 - 7.161RWLi

2Another way to resolve the perfect collinearity problem is to keep as many dummies as the
number of categories but to drop the common intercept term, B1, from the model; that is, run the re-
gression through the origin. But we have already warned about the problems involved in this pro-
cedure in Chapter 5.
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average union membership is (15.48 - 7.161) 8.319 percent. Since the dummy
coefficient is statistically significant, it seems that there is indeed a difference
in union membership between states that have the right-to-work laws and
the states that do not have such laws.

It is instructive to see the scattergram of PVT and RWL, which is shown in
Figure 6-1.

As you can see, the observations are concentrated at two extremes, 0 (no
RWL states) and 1 (RWL states). For comparison, we have also shown the
average level of unionization (%) in the two groups. The individual observa-
tions are scattered about their respective mean values.

ANOVA models like regressions (6.4) and (6.7), although common in fields
such as sociology, psychology, education, and market research, are not that
common in economics. In most economic research a regression model contains
some explanatory variables that are quantitative and some that are qualitative.
Regression models containing a combination of quantitative and qualitative
variables are called analysis-of-covariance (ANCOVA) models, and in the re-
mainder of this chapter we will deal largely with such models. ANCOVA mod-
els are an extension of the ANOVA models in that they provide a method of
statistically controlling the effects of quantitative explanatory variables, called
covariates or control variables, in a model that includes both quantitative and

184 PART ONE: THE LINEAR REGRESSION MODEL

UNION MEMBERSHIP IN THE PRIVATE SECTOR AND 
RIGHT-TO-WORK LAWS

PVT RWL PVT RWL PVT RWL

TABLE 6-3

10.6 1
24.7 0
9.7 0
6.5 1

17.8 0
9.2 0

16.6 0
12.8 0
13.6 0
7.3 1
5.4 1

24.2 0
6.4 1

15.2 0
12.9 1
13.1 1
8.7 1

11.1 0
6.5 1

13.8 0
14.5 0
14.0 0
20.6 0
17.0 0
8.9 1

11.9 0
15.6 0
9.7 1

17.7 1
11.2 0
20.6 0
11.4 0
26.3 0
3.9 1

7.6 1
15.4 0
8.5 1

15.4 0
16.6 0
15.8 0
5.9 1
7.7 1
6.4 1
5.7 0
6.8 1

12.2 0
4.8 1

21.4 0
14.7 0
15.4 0
9.4 1

Notes: PVT = Percent unionized in the private sector.
RWL = 1 for right-to-work-law states, 0 otherwise.

Sources: http://www.dol.gov/esa/whd/state/righttowork.htm.
http://www.bls.gov/news.release/union2.t05.htm.
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CHAPTER SIX: DUMMY VARIABLE REGRESSION MODELS 185

qualitative, or dummy, explanatory variables. As we will show, if we exclude
covariates from a model, the regression results are subject to model specifica-
tion error.

6.2 ANCOVA MODELS: REGRESSION ON ONE QUANTITATIVE
VARIABLE AND ONE QUALITATIVE VARIABLE WITH TWO
CATEGORIES: EXAMPLE 6.1 REVISITED

As an example of the ANCOVA model, we reconsider Example 6.1 by bringing in
disposable income (i.e., income after taxes), a covariate, as an explanatory variable.

(6.8)

Y = expenditure on food ($), X = after-tax income ($), and D = 1 for female and
0 for male.

Using the data given in Table 6-2, we obtained the following regression
results:

= 1506.244 - 228.9868Di + 0.0589Xi

se = (188.0096)(107.0582) (0.0061)

t = (8.0115) (-2.1388) (9.6417) (6.9)

p = (0.000)* (0.0611) (0.000)*

R2
= 0.9284

*Denotes extremely small values. 

YNi

Yi = B1 + B2Di + B3Xi + ui

Mean � 15.5%

Mean � 8.3%

30

25

20

10

5

15

0
0 0.2 0.30.1 0.4 0.5 0.6 0.7

RWL

P
V

T

0.8 0.9 1.0

Unionization in private sector (PVT) versus right-to-work-law (RWL) statesFIGURE 6-1
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These results are noteworthy for several reasons. First, in Eq. (6.2), the dummy
coefficient was statistically insignificant, but now it is significant. (Why?) It
seems in estimating Eq. (6.2) we committed a specification error because we ex-
cluded a covariate, the after-tax income variable, which a priori is expected to
have an important influence on consumption expenditure. Of course, we did this
for pedagogic reasons. This shows how specification errors can have a dramatic
effect(s) on the regression results. Second, since Equation (6.9) is a multiple re-
gression, we now can say that holding after-tax income constant, the mean food
expenditure for males is about $1,506, and for females it is (1506.244 - 228.9866)
or about $1,277, and these means are statistically significantly different. Third,
holding gender differences constant, the income coefficient of 0.0589 means the
mean food expenditure goes up by about 6 cents for every additional dollar of
after-tax income. In other words, the marginal propensity of food consumption—
additional expenditure on food for an additional dollar of disposable income—
is about 6 cents.

As a result of the preceding discussion, we can now derive the following
regressions from Eq. (6.9) for the two groups as follows:

Mean food expenditure regression for females:

= 1277.2574 + 0.0589Xi (6.10)

Mean food expenditure regression for males:

= 1506.2440 + 0.0589Xi (6.11)

These two regression lines are depicted in Figure 6-2.

YNi

YNi

186 PART ONE: THE LINEAR REGRESSION MODEL

Y

X
After-Tax Expenditure

Fo
od

 E
xp

en
d

it
u

re

Yi � 1277.2547 � 0.0589 Xi

ˆ

Yi �
 1506.2440 � 0.0589 Xi

ˆ

(male)

(female)

Food expenditure in relation to after-tax incomeFIGURE 6-2
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CHAPTER SIX: DUMMY VARIABLE REGRESSION MODELS 187

As you can see from this figure, the two regression lines differ in their inter-
cepts but their slopes are the same. In other words, these two regression lines
are parallel.

A question: By holding sex constant, we have said that the marginal propen-
sity of food consumption is about 6 cents. Could there also be a difference in
the marginal propensity of food consumption between the two sexes? In other
words, could the slope coefficient B3 in Equation (6.8) be statistically different
for the two sexes, just as there was a statistical difference in their intercept val-
ues? If that turned out to be the case, then Eq. (6.8) and the results based on
this model given in Eq. (6.9) would be suspect; that is, we would be commit-
ting another specification error. We explore this question in Section 6.5.

6.3 REGRESSION ON ONE QUANTITATIVE VARIABLE 
AND ONE QUALITATIVE VARIABLE WITH MORE THAN TWO
CLASSES OR CATEGORIES

In the examples we have considered so far we had a qualitative variable with
only two categories or classes—male or female, right-to-work laws or no right-
to-work laws, etc. But the dummy variable technique is quite capable of han-
dling models in which a qualitative variable has more than two categories.

To illustrate this, consider the data given in Table 6-4 on the textbook’s Web
site. This table gives data on the acceptance rates (in percents) of the top 65 grad-
uate schools (as ranked by U.S. News), among other things. For the time being, we
will concentrate only on the schools’ acceptance rates. Suppose we are interested
in finding out if there are statistically significant differences in the acceptance
rates among the 65 schools included in the analysis. For this purpose, the schools
have been divided into three regions: (1) South (22 states in all), (2) Northeast and
North Central (32 states in all), and (3) West (10 states in all). The qualitative vari-
able here is “region,” which has the three categories just listed.

Now consider the following model:

(6.12)

where D2 = 1 if the school is in the Northeastern or North Central region
= 0 otherwise (i.e., in one of the other 2 regions)

D3 = 1 if the school is in the Western region
= 0 otherwise (i.e., in one of the other 2 regions)

Since the qualitative variable region has three classes, we have assigned only
two dummies. Here we are treating the South as the base or reference category.
Table 6-4 includes these dummy variables.

From Equation (6.12) we can easily obtain the mean acceptance rate in the
three regions as follows:

Mean acceptance rate for schools in the Northeastern and North Central region:

(6.13)E(Si|D2i = 1, D3i = 0) = B1 + B2

Accepti = B1 + B2D2i + B3D3i + ui
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Mean acceptance rate for schools in the Western region:

(6.14)

Mean acceptance rate for schools in the Southern region:

(6.15)

As this exercise shows, the common intercept, B1, represents the mean accep-
tance rate for schools that are assigned the dummy values of (0, 0). Notice that B2
and B3, being the differential intercepts, tell us by how much the mean accep-
tance rates differ among schools in the different regions. Thus, B2 tells us by how
much the mean acceptance rates of the schools in the Northeastern and North
Central region differ from those in the Southern region. Analogously, B3 tells us
by how much the mean acceptance rates of the schools in the Western region dif-
fer from those in the Southern region. To get the actual mean acceptance rate in
the Northeastern and North Central region, we have to add B2 to B1, and the ac-
tual mean acceptance rate in the Western region is found by adding B3 to B1.

Before we present the statistical results, note carefully that we are treating the
South as the reference region. Hence all acceptance rate comparisons are in re-
lation to the South. If we had chosen the West as our reference instead, then we
would have to estimate Eq. (6.12) with the appropriate dummy assignment.
Therefore, once we go beyond the simple dichotomous classification (female or male,
union or nonunion, etc.), we must be very careful in specifying the base category, for all
comparisons are in relation to it. Changing the base category will change the compar-
isons, but it will not change the substance of the regression results. Of course, we can
estimate Eq. (6.12) with any category as the base category.

The regression results of model (6.12) are as follows:

Accepti = 44.541 - 10.680D2i - 12.501D3i

t = (14.38) (-2.67) (-2.26)

p = (0.000) (0.010) (0.028)
(6.16)

R2
= 0.122

These results show that the mean acceptance rate in the South (reference cate-
gory) was about 45 percent. The differential intercept coefficients of D2i and D3i
are statistically significant (Why?). This suggests that there is a significant statis-
tical difference in the mean acceptance rates between the Northeastern/North
Central and the Southern schools, as well as between the Western and Southern
schools.

In passing, note that the dummy variables will simply point out the differ-
ences, if they exist, but they will not suggest the reasons for the differences.
Acceptance rates in the South may be higher for a variety of reasons.

As you can see, Eq. (6.12) and its empirical counterpart in Eq. (6.16) are
ANOVA models. What happens if we consider an ANCOVA model by bringing

E(Si|D2i = 0, D3i = 0) = B1 + B2

E(Si|D2i = 0, D3i = 1) = B1 + B2

188 PART ONE: THE LINEAR REGRESSION MODEL
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CHAPTER SIX: DUMMY VARIABLE REGRESSION MODELS 189

in a quantitative explanatory variable, a covariate, such as the annual tuition
per school? The data on this variable are already contained in Table 6-4.
Incorporating this variable, we get the following regression (see Figure 6-3):

Accepti = 79.033 - 5.670D2i - 11.14D3i - 0.0011Tuition

t = (15.53) (-1.91) (-2.79) (-7.55)
(6.17)

p = (0.000)* (0.061)** (0.007)* (0.000)*

R2
= 0.546

A comparison of Equations (6.17) and (6.16) brings out a few surprises.
Holding tuition costs constant, we now see that, at the 5 percent level of signif-
icance, there does not appear to be a significant difference in mean acceptance
rates between schools in the Northeastern/North Central and the Southern re-
gions (Why?). As we saw before, however, there still is a statistically significant
difference in mean acceptance rates between the Western and Southern schools,
even while holding the tuition costs constant. In fact, it appears that the Western
schools’ average acceptance rate is about 11 percent lower that that of the
Southern schools while accounting for tuition costs. Since we see a difference in
results between Eqs. (6.17) and (6.16), there is a chance we have committed a
specification error in the earlier model by not including the tuition costs. This is
similar to the finding regarding the food expenditure function with and without
after-tax income. As noted before, omitting a covariate may lead to model
specification errors.

Tuition Cost

A
ve

ra
ge

 A
cc

ep
ta

n
ce

 R
at

e
Accepti  � 67.893 � 0.0011Tuition

i

�

Accepti  � 79.033 � 0.0011Tuition
i

Northeast/North
Central and South

West

�
Average acceptance rates and tuition costsFIGURE 6-3

*Statistically significant at the 5% level.
**Not statistically significant at the 5% level; however, at a 10% level, this variable would be

significant.
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The slope of -0.0011 suggests that if the tuition costs increase by $1, we
should expect to see a decrease of about 0.11 percent in a school’s acceptance
rate, on average.

We also ask the same question that we raised earlier about our food expendi-
ture example. Could the slope coefficient of tuition vary from region to region?
We will answer this question in Section 6.5.

6.4 REGRESSION ON ONE QUANTIATIVE EXPLANATORY
VARIABLE AND MORE THAN ONE QUALITATIVE VARIABLE

The technique of dummy variables can be easily extended to handle more than
one qualitative variable. To that end, consider the following model:

(6.18)

where Y = hourly wage in dollars
X = education (years of schooling)

D2 = 1 if female, 0 if male
D3 = 1 if nonwhite and non-Hispanic, 0 if otherwise

In this model sex and race are qualitative explanatory variables and education
is a quantitative explanatory variable.3

To estimate the preceding model, we obtained data on 528 individuals,
which gave the following results.4

= -0.2610 - 2.3606D2i - 1.7327D3i + 0.8028Xi

t = (-0.2357)** (-5.4873)* (-2.1803)* (9.9094)* (6.19)

R2
= 0.2032; n = 528

*indicates p value less than 5%; **indicates p value greater than 5%

Let us interpret these results. First, what is the base category here, since we now
have two qualitative variables? It is white and/or Hispanic male. Second, holding
the level of education and race constant, on average, women earn less than men
by about $2.36 per hour. Similarly, holding the level of education and sex con-
stant, on average, nonwhite/non-Hispanics earn less than the base category by
about $1.73 per hour. Third, holding sex and race constant, mean hourly wages
go up by about 80 cents per hour for every additional year of education.

YN i

Yi = B1 + B2D2i + B3D3i + B4Xi + ui

190 PART ONE: THE LINEAR REGRESSION MODEL

3If we were to define education as less than high school, high school, and more than high school,
education would also be a dummy variable with three categories, which means we would have to
use two dummies to represent the three categories.

4These data were originally obtained by Ernst Bernd and are reproduced from Arthur S.
Goldberger, Introductory Econometrics, Harvard University Press, Cambridge, Mass., 1998, Table 1.1.
These data were derived from the Current Population Survey conducted in May 1985.
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CHAPTER SIX: DUMMY VARIABLE REGRESSION MODELS 191

Interaction Effects

Although the results given in Equation (6.19) make sense, implicit in
Equation (6.18) is the assumption that the differential effect of the sex dummy
D2 is constant across the two categories of race and the differential effect of the
race dummy D3 is also constant across the two sexes. That is to say, if the mean
hourly wage is higher for males than for females, this is so whether they are
nonwhite/non-Hispanic or not. Likewise, if, say, nonwhite/non-Hispanics
have lower mean wages, this is so regardless of sex.

In many cases such an assumption may be untenable. As a matter of fact, U.S.
courts are full of cases charging all kinds of discrimination from a variety of
groups. A female nonwhite/non-Hispanic may earn lower wages than a male
nonwhite/non-Hispanic. In other words, there may be interaction between the
qualitative variables, D2 and D3. Therefore, their effect on mean Y may not
be simply additive, as in Eq. (6.18), but may be multiplicative as well, as in the
following model:

(6.20)

The dummy D2iD3, the product of two dummies, is called the interaction
dummy, for it gives the joint, or simultaneous, effect of two qualitative variables.

From Equation (6.20) we can obtain:

(6.21)

which is the mean hourly wage function for female nonwhite/non-Hispanic
workers. Observe that:

B2 = differential effect of being female
B3 = differential effect of being a nonwhite/non-Hispanic
B4 = differential effect of being a female nonwhite/non-Hispanic

which shows that the mean hourly wage of female nonwhite/non-Hispanics
is different (by B4) from the mean hourly wage of females or nonwhite/
non-Hispanics. Depending on the statistical significance of the various dummy
coefficients, we can arrive at specific cases.

Using the data underlying Eq. (6.19), we obtained the following regression
results:

= -0.2610 -2.3606D2i - 1.7327D3i + 2.1289D2iD3i + 0.8028Xi

t = (-0.2357)** (-5.4873)* (-2.1803)*(1.7420)! (9.9095)* (6.22)

R2
= 0.2032, n = 528

*p value below 5%, ! = p value about 8%, **p value greater than 5%

YN i

E (Yi|D2i = 1, D3i = 1, Xi) = (B1 + B2 + B3 + B4) + B5Xi

Yi = B1 + B2D2i + B3D3i + B3(D2iD3i) + B4Xi + u

guj75845_ch06.qxd  4/16/09  11:56 AM  Page 191

The Pink Professor

S!D
Underline

S!D
Underline

S!D
Underline

S!D
Underline

S!D
Underline

S!D
Underline

S!D
Underline

S!D
Underline

S!D
Underline

S!D
Highlight

S!D
Highlight

S!D
Highlight

S!D
Highlight

S!D
Highlight

S!D
Highlight

S!D
Highlight

S!D
Highlight

S!D
Pencil

S!D
Highlight

S!D
Highlight

S!D
Highlight

S!D
Highlight



Holding the level of education constant, if we add all the dummy coefficients,
we obtain (-2.3606 - 1.7327 + 2.1289) = -1.964. This would suggest that the
mean hourly wage of nonwhite/non-Hispanic female workers is lower by
about $1.96, which is between the value of 2.3606 (sex difference alone) and
1.7327 (race difference alone). So, you can see how the interaction dummy mod-
ifies the effect of the two coefficients taken individually.

Incidentally, if you select 5% as the level of significance, the interaction
dummy is not statistically significant at this level, so there is no interaction ef-
fect of the two dummies and we are back to Eq. (6.18).

A Generalization

As you can imagine, we can extend our model to include more than one quan-
titative variable and more than two qualitative variables. However, we must be
careful that the number of dummies for each qualitative variable is one less than the
number of categories of that variable. An example follows.

Example 6.3. Campaign Contributions by Political Parties

In a study of party contributions to congressional elections in 1982, Wilhite
and Theilmann obtained the following regression results, which are given in
tabular form (Table 6-5) using the authors’ symbols. The dependent variable in
this regression is PARTY$ (campaign contributions made by political parties
to local congressional candidates). In this regression $GAP, VGAP, and PU
are three quantitative variables and OPEN, DEMOCRAT, and COMM are
three qualitative variables, each with two categories.

What do these results suggest? The larger the $GAP is (i.e., the opponent
has substantial funding), the less the support by the national party to the
local candidate is. The larger the VGAP is (i.e., the larger the margin by
which the opponent won the previous election), the less money the national
party is going to spend on this candidate. (This expectation is not borne out
by the results for 1982.) An open race is likely to attract more funding from
the national party to secure that seat for the party; this expectation is sup-
ported by the regression results. The greater the party loyalty (PU) is, the
greater the party support will be, which is also supported by the results.
Since the Democratic party has a smaller campaign money chest than the
Republican party, the Democratic dummy is expected to have a negative
sign, which it does (the intercept term for the Democratic party’s campaign
contribution regression will be smaller than that of its rival). The COMM
dummy is expected to have a positive sign, for if you are up for election and
happen to be a member of the national committees that distribute the cam-
paign funds, you are more likely to steer proportionately larger amounts of
money toward your own election.

192 PART ONE: THE LINEAR REGRESSION MODEL
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CHAPTER SIX: DUMMY VARIABLE REGRESSION MODELS 193

6.5 COMPARING TWO REGESSIONS5

Earlier in Sec. 6.2 we raised the possibility that not only the intercepts but also
the slope coefficients could vary between categories. Thus, for our food expen-
diture example, are the slope coefficients of the after-tax income the same for

AGGREGATE CONTRIBUTIONS BY U.S.
POLITICAL PARTIES, 1982

Explanatory variable Coefficient

$GAP -8.189*
(1.863)

VGAP 0.0321
(0.0223)

OPEN 3.582*
(0.7293)

PU 18.189*
(0.849)

DEMOCRAT -9.986*
(0.557)

COMM 1.734*
(0.746)

R2 0.70
F 188.4

Notes: Standard errors are in parentheses.
*Means significant at the 0.01 level.

$GAP = A measure of the candidate’s
finances

VGAP = The size of the vote differential in
the previous election

OPEN = 1 for open seat races, 0 if otherwise
PU = Party unity index as calculated by

Congressional Quarterly
DEMOCRAT = 1 for members of the Democratic

party, 0 if otherwise
COMM = 1 for representatives who are

members of the Democratic
Congressional Campaign
Committee or the National
Republican Congressional
Committee

= 0 otherwise (i.e., those who are not
members of such committees)

Source: Al Wilhite and John Theilmann, “Campaign
Contributions by Political Parties: Ideology versus
Winning,” Atlantic Economic Journal, vol. XVII, June
1989, pp. 11–20. Table 2, p. 15 (adapted).

TABLE 6-5

5An alternative approach to comparing two or more regressions that gives similar results to the
dummy variable approach discussed below is popularly known as the Chow test, which was popu-
larized by the econometrician Gregory Chow. The Chow test is really an application of the restricted
least-squares method that we discussed in Chapter 4. For a detailed discussion of the Chow test, see
Gujarati and Porter, Basic Econometrics, 5th ed., McGraw-Hill, New York, 2009, pp. 256–259.
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both male and female? To explore this possibility, consider the following
model:

(6.23)

This is a modification of model (6.8) in that we have added an extra variable
DiXi.

From this regression we can derive the following regression:

Mean food expenditure function, males (Di = 0).
Taking the conditional expectation of Equation (6.23), given the values of D

and X, we obtain

(6.24)

Mean food expenditure function, females (Di = 1).
Again, taking the conditional expectation of Eq. (6.23), we obtain

(6.25)

Just as we called B2 the differential intercept coefficient, we can now call B4 the
differential slope coefficient (also called the slope drifter), for it tells by how
much the slope coefficient of the income variable differs between the two sexes
or two categories. Just as (B1 + B2) gives the mean value of Y for the category
that receives the dummy value of 1 when X is zero, (B3 + B4) gives the slope co-
efficient of the income variable for the category that receives the dummy value
of 1. Notice how the introduction of the dummy variable in the additive form en-
ables us to distinguish between the intercept coefficients of the two groups and
how the introduction of the dummy variable in the interactive, or multiplica-
tive, form (D multiplied by X) enables us to differentiate between slope coeffi-
cients of the two groups.6

Now depending on the statistical significance of the differential intercept
coefficient, B2, and the differential slope coefficient, B4, we can tell whether the
female and male food expenditure functions differ in their intercept values or
their slope values, or both. We can think of four possibilities, as shown in
Figure 6-4.

Figure 6-4(a) shows that there is no difference in the intercept or the slope
coefficients of the two food expenditure regressions. That is, the two regressions
are identical. This is the case of coincident regressions.

Figure 6-4(b) shows that the two slope coefficients are the same, but the
intercepts are different. This is the case of parallel regressions.

 = (B1 + B2) + (B3 + B4)Xi, since Di = 1

 E (Yi|Di = 1, Xi) = (B1 + B2Di) + (B3 + B4Di)Xi

E (Yi|D = 0, Xi) = B1 + B3Xi

Yi = B1 + B2Di + B3Xi + B4(DiXi) + ui

194 PART ONE: THE LINEAR REGRESSION MODEL

6In Eq. (6.20) we allowed for interactive dummies. But a dummy could also interact with a quan-
titative variable.
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CHAPTER SIX: DUMMY VARIABLE REGRESSION MODELS 195

Figure 6-4(c) shows that the two regressions have the same intercepts, but
different slopes. This is the case of concurrent regressions.

Figure 6-4(d) shows that both the intercept and slope coefficients are differ-
ent; that is, the two regressions are different. This is the case of dissimilar
regressions.

Returning to our example, let us first estimate Eq. (6.23) and see which of the
situations depicted in Figure 6-4 prevails. The data to run this regression are
already given in Table 6-2. The regression results, using EViews, are as shown in
Table 6-6.

It is clear from this regression that neither the differential intercept nor the dif-
ferential slope coefficient is statistically significant, suggesting that perhaps we
have the situation of coincident regressions shown in Figure 6-4(a). Are these
results in conflict with those given in Eq. (6.8), where we saw that the two inter-
cepts were statistically different? If we accept the results given in Eq. (6.8), then
we have the situation shown in Figure 6-4(b), the case of parallel regressions (see
also Fig. 6-3). What is an econometrician to do in situations like this?

It seems in going from Equations (6.8) to (6.23), we also have committed a
specification error in that we seem to have included an unnecessary variable,

Y

X

(a) Coincident regressions

Y

X

(b) Parallel regressions

Y

X
(c) Concurrent regressions

Y

X
(d) Dissimilar regressions

0

Comparing two regressionsFIGURE 6-4
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DiXi. As we will see in Chapter 7, the consequences of including or excluding
variables from a regression model can be serious, depending on the particular
situation. As a practical matter, we should consider the most comprehensive
model (e.g., model [6.23]) and then reduce it to a smaller model (e.g., Eq. [6.8])
after suitable diagnostic testing. We will consider this topic in greater detail in
Chapter 7.

Where do we stand now? Considering the results of models (6.1), (6.8), and
(6.23), it seems that model (6.8) is probably the most appropriate model for the
food expenditure example. We probably have the case of parallel regression:
The female and male food expenditure regressions only differ in their intercept
values. Holding sex constant, it seems there is no difference in the response of
food consumption expenditure in relation to after-tax income for men and
women. But keep in mind that our sample is quite small. A larger sample might
give a different outcome.

Example 6.4. The Savings-Income Relationship in the United States

As a further illustration of how we can use the dummy variables to assess the
influence of qualitative variables, consider the data given in Table 6-7. These
data relate to personal disposable (i.e., after-tax) income and personal sav-
ings, both measured in billions of dollars, in the United States for the period
1970 to 1995. Our objective here is to estimate a savings function that relates
savings (Y) to personal disposable income (PDI) (X) for the United States for
the said period.

To estimate this savings function, we could regress Y and X for the entire
period. If we do that, we will be maintaining that the relationship between
savings and PDI remains the same throughout the sample period. But that
might be a tall assumption. For example, it is well known that in 1982 the
United States suffered its worst peacetime recession. The unemployment rate
that year reached 9.7 percent, the highest since 1948. An event such as this

196 PART ONE: THE LINEAR REGRESSION MODEL

RESULTS OF REGRESSION (6.23)

Variable Coefficient Std. Error t-Statistic Prob.

C 1432.577 248.4782 5.765404 0.0004
D -67.89322 350.7645 -0.193558 0.8513
X 0.061583 0.008349 7.376091 0.0001

D.X -0.006294 0.012988 -0.484595 0.6410

R-squared 0.930459 Mean dependent var 2925.250
Adjusted R-squared 0.904381 S.D. dependent var 604.3869
S.E. of regression 186.8903 F-statistic 35.68003
Sum squared resid 279423.9 Prob(F-statistic) 0.000056

Notes: Dependent Variable: FOODEXP
Sample: 1–12
Included observations: 12

TABLE 6-6
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CHAPTER SIX: DUMMY VARIABLE REGRESSION MODELS 197

might disturb the relationship between savings and PDI. To see if this in fact
happened, we can divide our sample data into two periods, 1970 to 1981 and
1982 to 1995, the pre- and post-1982 recession periods.

In principle, we could estimate two regressions for the two periods in
question. Instead, we could estimate just one regression by adding a dummy
variable that takes a value of 0 for the period 1970 to 1981 and a value of 1 for
the period 1982 to 1995 and estimate a model similar to Eq. (6.23). To allow
for a different slope between the two periods, we have included the interac-
tion term, as well. That exercise gives the results shown in Table 6-8.

As these results show, both the differential intercept and slope coefficients
are individually statistically significant, suggesting that the savings-income
relationship between the two time periods has changed. The outcome resem-
bles Figure 6-4(d). From the data in Table 6-8, we can derive the following
savings regressions for the two periods:

PERSONAL SAVINGS AND PERSONAL DISPOSABLE
INCOME, UNITED STATES, 1970–1995

Personal Product of the 
Personal disposable Dummy dummy variable 

Year savings income (PDI) variable and PDI

1970 61.0 727.1 0 0.0
1971 68.6 790.2 0 0.0
1972 63.6 855.3 0 0.0
1973 89.6 965.0 0 0.0
1974 97.6 1054.2 0 0.0
1975 104.4 1159.2 0 0.0
1976 96.4 1273.0 0 0.0
1977 92.5 1401.4 0 0.0
1978 112.6 1580.1 0 0.0
1979 130.1 1769.5 0 0.0
1980 161.8 1973.3 0 0.0
1981 199.1 2200.2 0 0.0
1982 205.5 2347.3 1* 2347.3
1983 167.0 2522.4 1 2522.4
1984 235.7 2810.0 1 2810.0
1985 206.2 3002.0 1 3002.0
1986 196.5 3187.6 1 3187.6
1987 168.4 3363.1 1 3363.1
1988 189.1 3640.8 1 3640.8
1989 187.8 3894.5 1 3894.5
1990 208.7 4166.8 1 4166.8
1991 246.4 4343.7 1 4343.7
1992 272.6 4613.7 1 4613.7
1993 214.4 4790.2 1 4790.2
1994 189.4 5021.7 1 5021.7
1995 249.3 5320.8 1 5320.8

Note: *Dummy variable = 1 for observations beginning in 1982.
Source: Economic Report of the President, 1997, data are in billions

of dollars and are from Table B-28, p. 332.

TABLE 6-7
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Savings-Income regression: 1970–1981:

Savingst = 1.0161 + 0.0803 Incomet (6.26)

Savings-Income regression: 1982–1995:

Savingst = (1.0161 + 152.4786) + (0.0803 - 0.0655) Incomet

= 153.4947 + 0.0148 Incomet (6.27)

If we had disregarded the impact of the 1982 recession on the savings-income
relationship and estimated this relationship for the entire period of 1970 to
1995, we would have obtained the following regression:

Savingst = 62.4226 + 0.0376 Incomet

t = (4.8917) (8.8937) r2
= 0.7672

(6.28)

You can see significant differences in the marginal propensity to save
(MPS)—additional savings from an additional dollar of income—in these
regressions. The MPS was about 8 cents from 1970 to 1981 and only about
1 cent from 1982 to 1995. You often hear the complaint that Americans are
poor savers. Perhaps these results may substantiate this complaint.

6.6 THE USE OF DUMMY VARIABLES IN SEASONAL ANALYSIS

Many economic time series based on monthly or quarterly data exhibit seasonal
patterns (regular oscillatory movements). Examples are sales of department
stores at Christmas, demand for money (cash balances) by households at holi-
day times, demand for ice cream and soft drinks during the summer, and
demand for travel during holiday seasons. Often it is desirable to remove the

198 PART ONE: THE LINEAR REGRESSION MODEL

REGRESSION RESULTS OF SAVINGS-INCOME RELATIONSHIP

Variable Coefficient Std. Error t-Statistic Prob.

C 1.016117 20.16483 0.050391 0.9603
DUM 152.4786 33.08237 4.609058 0.0001
INCOME 0.080332 0.014497 5.541347 0.0000
DUM*INCOME -0.065469 0.015982 -4.096340 0.0005

R-squared 0.881944 Mean dependent var 162.0885
Adjusted R-squared 0.865846 S.D. dependent var 63.20446
S.E. of regression 23.14996

Notes: Dependent Variable: Savings
Sample: 1970–1995
Observations included: 26

TABLE 6-8
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CHAPTER SIX: DUMMY VARIABLE REGRESSION MODELS 199

seasonal factor, or component, from a time series so that we may concentrate on
the other components of times series, such as the trend,7 which is a fairly steady
increase or decrease over an extended time period. The process of removing the
seasonal component from a time series is known as deseasonalization, or seasonal
adjustment, and the time series thus obtained is called a deseasonalized, or season-
ally adjusted, time series. The U.S. government publishes important economic
time series on a seasonally adjusted basis.

There are several methods of deseasonalizing a time series, but we will con-
sider only one of these methods, namely, the method of dummy variables,8 which
we will now illustrate.

Example 6.5. Refrigerator Sales and Seasonality

To show how dummy variables can be used for seasonal analysis, consider
the data given in Table 6-9, found on the textbook’s Web site.

This table gives data on the number of refrigerators sold (in thousands)
for the United States from the first quarter of 1978 to the fourth quarter of
1985, a total of 32 quarters. The data on refrigerator sales are plotted in 
Fig. 6-5.

Figure 6-5 probably suggests that there is a seasonal pattern to refrigerator
sales. To see if this is the case, consider the following model:

(6.29)

where Y = sales of refrigerators (in thousands), D2, D3, and D4 are dummies
for the second, third, and fourth quarter of each year, taking a value of 1 for

Yt = B1 + B2D2t + B3D3t + B4D4t + ut

7A time series may contain four components: a seasonal, a cyclical, a trend (or long-term compo-
nent), and one that is strictly random.

8For other methods of seasonal adjustment, see Paul Newbold, Statistics for Business and
Economics, latest edition, Prentice-Hall, Englewood Cliffs, N.J.

1800

1600

1400

1200

1000

800
5 10 15 20 25 30

FRIG

Sales of refrigerators, United States, 1978:1–1985:4FIGURE 6-5

guj75845_ch06.qxd  4/16/09  11:56 AM  Page 199

The Pink Professor



the relevant quarter and a value of 0 for the first quarter. We are treating the
first quarter as the reference quarter, although any quarter can serve as the
reference quarter. Note that since we have four quarters (or four seasons),
we have assigned only three dummies to avoid the dummy variable trap.
The layout of the dummies is given in Table 6-9. Note that the refrigerator is
classified as a durable goods item because it has a sufficiently long life.

The regression results of this model are as follows:

= 1222.1250 + 245.3750D2t + 347.6250D3t - 62.1250D4t

t = (20.3720)* (2.8922)* (4.0974)* (-0.7322)** (6.30)

R2
= 0.5318

*denotes a p value of less than 5%

**denotes a p value of more than 5%

Since we are treating the first quarter as the benchmark, the differential in-
tercept coefficients (i.e., coefficients of the seasonal dummies) give the sea-
sonal increase or decrease in the mean value of Y relative to the benchmark
season. Thus, the value of about 245 means the average value of Y in the sec-
ond quarter is greater by 245 than that in the first quarter, which is about
1222. The average value of sales of refrigerators in the second quarter is then
about (1222 + 245) or about 1,467 thousands of units. Other seasonal dummy
coefficients are to be interpreted similarly.

As you can see from Equation (6.30), the seasonal dummies for the second
and third quarters are statistically significant but that for the fourth quarter
is not. Thus, the average sale of refrigerators is the same in the first and the
fourth quarters but different in the second and the third quarters. Hence, it
seems that there is some seasonal effect associated with the second and third
quarters but not the fourth quarter. Perhaps in the spring and summer peo-
ple buy more refrigerators than in the winter and fall. Of course, keep in
mind that all comparisons are in relation to the benchmark, which is the first
quarter.

How do we obtain the deseasonalized time series for refrigerator sales?
This can be done easily. Subtract the estimated value of Y from Eq. (6.30)
from the actual values of Y, which are nothing but the residuals from regres-
sion (6.30). Then add to the residuals the mean value of Y. The resulting
series is the deseasonalized time series. This series may represent the other
components of the time series (cyclical, trend, and random).9 This is all
shown in Table 6-9.

YNt
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9Of course, this assumes that the dummy variable technique is an appropriate method of desea-
sonalizing a time series (TS). A time series can be represented as TS = s + c + t + u, where s represents
the seasonal, c the cyclical, t the trend, and u the random component. For other methods of desea-
sonalization, see Francis X. Diebold, Elements of Forecasting, 4th ed., South-Western Publishing,
Cincinnati, Ohio, 2007.
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CHAPTER SIX: DUMMY VARIABLE REGRESSION MODELS 201

In Example 6.5 we had quarterly data. But many economic time series are
available on a monthly basis, and it is quite possible that there may be some sea-
sonal component in the monthly data. To identify it, we could create 11 dum-
mies to represent 12 months. This principle is general. If we have daily data, we
could use 364 dummies, one less than the number of days in a year. Of course,
you have to use some judgment in using several dummies, for if you use dum-
mies indiscriminately, you will quickly consume degrees of freedom; you lose
one d.f. for every dummy coefficient estimated.

6.7 WHAT HAPPENS IF THE DEPENDENT VARIABLE IS ALSO 
A DUMMY VARIABLE? THE LINEAR PROBABILITY MODEL (LPM)

So far we have considered models in which the dependent variable Y was quan-
titative and the explanatory variables were either qualitative (i.e., dummy),
quantitative, or a mixture thereof. In this section we consider models in which
the dependent variable is also dummy, or dichotomous, or binary.

Suppose we want to study the labor force participation of adult males as a
function of the unemployment rate, average wage rate, family income, level of
education, etc. Now a person is either in or not in the labor force. So whether a
person is in the labor force or not can take only two values: 1 if the person is in
the labor force and 0 if he is not. Other examples include: a country is either a
member of the European Union or it is not; a student is either admitted to West
Point or he or she is not; a baseball player is either selected to play in the majors
or he is not.

A unique feature of these examples is that the dependent variable elicits a yes
or no response, that is, it is dichotomous in nature.10 How do we estimate such
models? Can we apply OLS straightforwardly to such a model? The answer is
that yes we can apply OLS but there are several problems in its application.
Before we consider these problems, let us first consider an example.

Table 6-10, found on the textbook’s Web site, gives hypothetical data on
40 people who applied for mortgage loans to buy houses and their annual
incomes. Later we will consider a concrete application.

In this table Y = 1 if the mortgage loan application was accepted and 0 if it
was not accepted, and X represents annual family income. Now consider the
following model:

(6.31)

where Y and X are as defined before.

Yi = B1 + B2Xi + ui

10What happens if the dependent variable has more than two categories? For example, a person
may belong to the Democratic party, the Republican party, or the Independent party. Here, party affil-
iation is a trichotomous variable. There are methods of handling models in which the dependent
variable can take several categorical values. But this topic is beyond the scope of this book.
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Model (6.31) looks like a typical linear regression model but it is not because
we cannot interpret the slope coefficient B2 as giving the rate of change of Y for
a unit change in X, for Y takes only two values, 0 and 1. A model like Eq. (6.31)
is called a linear probability model (LPM) because the conditional expectation
of Yi given Xi, , can be interpreted as the conditional probability that the
event will occur given Xi, that is, . Further, this conditional probabil-
ity changes linearly with X. Thus, in our example, gives the probability
that a mortgage applicant with income of Xi, say $60,000 per year, will have his or
her mortgage application approved.

As a result, we now interpret the slope coefficient B2 as a change in the pro-
bability that Y = 1, when X changes by a unit. The estimated Yi value from
Eq. (6.31), namely, , is the predicted probability that Y equals 1 and b2 is an
estimate of B2.

With this change in the interpretation of Eq. (6.31) when Y is binary can we
then assume that it is appropriate to estimate Eq. (6.31) by OLS? The answer is
yes, provided we take into account some problems associated with OLS estima-
tion of Eq. (6.31). First, although Y takes a value of 0 or 1, there is no guarantee
that the estimated Y values will necessarily lie between 0 and 1. In an applica-
tion, some can turn out to be negative and some can exceed 1. Second, since Y
is binary, the error term is also binary.11 This means that we cannot assume that
ui follows a normal distribution. Rather, it follows the binomial probability
distribution. Third, it can be shown that the error term is heteroscedastic; so
far we are working under the assumption that the error term is homoscedas-
tic. Fourth, since Y takes only two values, 0 and 1, the conventionally com-
puted R2 value is not particularly meaningful (for an alternative measure, see
Problem 6.24).

Of course, not all these problems are insurmountable. For example, we know
that if the sample size is reasonably large, the binomial distribution converges
to the normal distribution. As we will see in Chapter 9, we can find ways to get
around the heteroscedasticity problem. So the problem that remains is that
some of the estimated Y values can be negative and some can exceed 1. In prac-
tice, if an estimated Y value is negative it is taken as zero, and if it exceeds 1, it
is taken as 1. This may be convenient in practice if we do not have too many
negative values or too many values that exceed 1.

But the major problem with LPM is that it assumes the probability changes
linearly with the X value; that is, the incremental effect of X remains constant
throughout. Thus if the Y variable is home ownership and the X variable is
income, the LPM assumes that as X increases, the probability of Y increases lin-
early, whether X = 1000 or X = 10,000. In reality, we would expect the probabil-
ity that Y = 1 to increase nonlinearly with X. At a low level of income, a family
will not own a house, but at a sufficiently high level of income, a family most

YNi

YNi

E (Yi|Xi)
P(Yi = 1|Xi)

E (Yi|Xi)
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11It is obvious from Eq. (6.31) that when Yi = 1, we have ui = 1 - B1 - B2Xi and when Yi = 0, 
ui = -B1 - B2Xi.
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CHAPTER SIX: DUMMY VARIABLE REGRESSION MODELS 203

likely will own a house. Beyond that income level, further increases in family
income will have no effect on the probability of owning a house. Thus, at both
ends of the income distribution, the probability of owning a house will be
virtually unaffected by a small increase in income.

There are alternatives in the literature to the LPM model, such as the logit or
probit models. A discussion of these models will, however, take us far afield and is
better left for the references.12 However, this topic is discussed in Chapter 12 for
the benefit of those who want to pursue this subject further.

Despite the difficulties with the LPM, some of which can be corrected, espe-
cially if the sample size is large, the LPM is used in practical applications be-
cause of its simplicity. Very often it provides a benchmark against which we can
compare the more complicated models, such as the logit and probit.

Let us now illustrate LPM with the data given in Table 6-10. The regression
results are as follows:

= -0.9456 + 0.0255Xi

t = (-7.6984)(12.5153) r2
= 0.8047

(6.32)

The interpretation of this model is this: As income increases by a dollar, the
probability of mortgage approval goes up by about 0.03. The intercept value
here has no viable practical meaning. Given the warning about the r2 values
in LPM, we may not want to put much value in the observed high r2 value in
the present case. Sometimes we obtain a high r2 value in such models if all the
observations are closely bunched together either around zero or 1.

Table 6-10 gives the actual and estimated values of Y from LPM model (6.31).
As you can observe, of the 40 values, 6 are negative and 6 are in excess of 1,
which shows one of the problems with the LPM alluded to earlier. Also, the
finding that the probability of mortgage approval increases linearly with in-
come at a constant rate of about 0.03, may seem quite unrealistic.

To conclude our discussion of LPM, here is a concrete application.

Example 6.6. Discrimination in Loan Markets

To see if there is discrimination in getting mortgage loans, Maddala and Trost
examined a sample of 750 mortgage applications in the Columbia, South
Carolina, metropolitan area.13 Of these, 500 applications were approved and
250 rejected. To see what factors determine mortgage approval, the authors
developed an LPM and obtained the following results, which are given in
tabular form. In this model the dependent variable is Y, which is binary, tak-
ing a value of 1 if the mortgage loan application was accepted and a value of
0 if it was rejected. Part of the objective of the study was to find out if there

YN i

12For an accessible discussion of these models, see Gujarati and Porter, 5th ed., McGraw-Hill,
New York, 2009, Chapter 15.

13See G. S. Maddala and R. P. Trost, “On Measuring Discrimination in Loan Markets,” Housing
Finance Review, 1982, pp. 245–268.
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was discrimination in the loan market on account of sex, race, and other
qualitative factors.

Explanatory variable Coefficient t ratios

Intercept 0.501 not given
AI 1.489 4.69*
XMD -1.509 -5.74*
DF 0.140 0.78**
DR -0.266 -1.84*
DS -0.238 -1.75*
DA -1.426 -3.52*
NNWP -1.762 0.74**
NMFI 0.150 0.23**
NA -0.393 -0.134

Notes: AI = Applicant’s and co-applicants’ incomes ($ in thousands)
XMD = Debt minus mortgage payment ($ in thousands)

DF = 1 if female and 0 if male
DR = 1 if nonwhite and 0 if white
DS = 1 if single, 0 if otherwise
DA = Age of house (102 years)

NNWP = Percent nonwhite in the neighborhood (*103)
NMFI = Neighborhood mean family income (105 dollars)

NA = Neighborhood average age of home (102 years)
*p value 5% or lower, one-tail test.
**p value greater than 5%.

An interesting feature of the Maddala-Trost model is that some of the explana-
tory variables are also dummy variables. The interpretation of the dummy coeffi-
cient of DR is this: Holding all other variables constant, the probability that a non-
white will have his or her mortgage loan application accepted is lower by 0.266 or
about 26.6 percent compared to the benchmark category, which in the present in-
stance is married white male. Similarly, the probability that a single person’s
mortgage loan application will be accepted is lower by 0.238 or 23.8 percent com-
pared with the benchmark category, holding all other factors constant.

We should be cautious of jumping to the conclusion that there is race dis-
crimination or discrimination against single people in the home mortgage mar-
ket, for there are many factors involved in getting a home mortgage loan.

6.8 SUMMARY

In this chapter we showed how qualitative, or dummy, variables taking values of
1 and 0 can be introduced into regression models alongside quantitative vari-
ables. As the various examples in the chapter showed, the dummy variables are
essentially a data-classifying device in that they divide a sample into various
subgroups based on qualities or attributes (sex, marital status, race, religion, etc.)
and implicitly run individual regressions for each subgroup. Now if there are dif-
ferences in the responses of the dependent variable to the variation in the quanti-
tative variables in the various subgroups, they will be reflected in the differences
in the intercepts or slope coefficients of the various subgroups, or both.

204 PART ONE: THE LINEAR REGRESSION MODEL
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CHAPTER SIX: DUMMY VARIABLE REGRESSION MODELS 205

Although it is a versatile tool, the dummy variable technique has to be han-
dled carefully. First, if the regression model contains a constant term (as most
models usually do), the number of dummy variables must be one less than the
number of classifications of each qualitative variable. Second, the coefficient attached
to the dummy variables must always be interpreted in relation to the control, or
benchmark, group—the group that gets the value of zero. Finally, if a model has sev-
eral qualitative variables with several classes, introduction of dummy variables
can consume a large number of degrees of freedom (d.f.). Therefore, we should
weigh the number of dummy variables to be introduced into the model against the total
number of observations in the sample.

In this chapter we also discussed the possibility of committing a specification
error, that is, of fitting the wrong model to the data. If intercepts as well as slopes
are expected to differ among groups, we should build a model that incorporates
both the differential intercept and slope dummies. In this case a model that in-
troduces only the differential intercepts is likely to lead to a specification error.
Of course, it is not always easy a priori to find out which is the true model.
Thus, some amount of experimentation is required in a concrete study, espe-
cially in situations where theory does not provide much guidance. The topic of
specification error is discussed further in Chapter 7.

In this chapter we also briefly discussed the linear probability model (LPM)
in which the dependent variable is itself binary. Although LPM can be
estimated by ordinary least square (OLS), there are several problems with a rou-
tine application of OLS. Some of the problems can be resolved easily and some
cannot. Therefore, alternative estimating procedures are needed. We mentioned
two such alternatives, the logit and probit models, but we did not discuss them
in view of the somewhat advanced nature of these models (but see Chapter 12).

KEY TERMS AND CONCEPTS

The key terms and concepts introduced in this chapter are

Qualitative versus quantitative
variables

Dummy variables
Analysis-of-variance (ANOVA)

models
Differential intercept coefficients
Base, reference, benchmark, or 

comparison category
Data matrix
Dummy variable trap; perfect 

collinearity, multicollinearity
Analysis-of-covariance (ANCOVA) 

models
Covariates; control variables

Comparing two regressions
Interactive, or multiplicative
Additive
Interaction dummy
Differential slope coefficient, or 

slope drifter
Coincident regressions
Parallel regressions
Concurrent regressions
Dissimilar regressions
Marginal propensity to save (MPS)
Seasonal patterns
Linear probability model (LPM)
Binomial probability distribution
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QUESTIONS

6.1. Explain briefly the meaning of:
a. Categorical variables.
b. Qualitative variables.
c. Analysis-of-variance (ANOVA) models.
d. Analysis-of-covariance (ANCOVA) models.
e. The dummy variable trap.
f. Differential intercept dummies.
g. Differential slope dummies.

6.2. Are the following variables quantitative or qualitative?
a. U.S. balance of payments.
b. Political party affiliation.
c. U.S. exports to the Republic of China.
d. Membership in the United Nations.
e. Consumer Price Index (CPI).
f. Education.
g. People living in the European Community (EC).
h. Membership in General Agreement on Tariffs and Trade (GATT).
i. Members of the U.S. Congress.
j. Social security recipients.

6.3. If you have monthly data over a number of years, how many dummy variables
will you introduce to test the following hypotheses?
a. All 12 months of the year exhibit seasonal patterns.
b. Only February, April, June, August, October, and December exhibit seasonal

patterns.
6.4. What problems do you foresee in estimating the following models:

a.

where Dit = 1 for observation in quarter i, i = 1, 2, 3, 4
= 0 otherwise

b.

where GNPt = gross national product (GNP) at time t
Mt = the money supply at time t

Mt-1 = the money supply at time (t - 1)

6.5. State with reasons whether the following statements are true or false.
a. In the model Yi = B1 + B2Di + ui, letting Di take the values of (0, 2) instead of

(0, 1) will halve the value of B2 and will also halve the t value.
b. When dummy variables are used, ordinary least squares (OLS) estimators

are unbiased only in large samples.
6.6. Consider the following model:

Yi = B0 + B1Xi + B2D2i + B3D3i + ui

GNPt = B1 + B2Mt + B3Mt-1 + B4(Mt - Mt-1) + ut

Yt = B0 + B1D1t + B2D2t + B3D3t + B4D4t + ut

206 PART ONE: THE LINEAR REGRESSION MODEL
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CHAPTER SIX: DUMMY VARIABLE REGRESSION MODELS 207

where Y = annual earnings of MBA graduates
X = years of service

D2 = 1 if Harvard MBA
= 0 if otherwise

D3 = 1 if Wharton MBA
= 0 if otherwise

a. What are the expected signs of the various coefficients?
b. How would you interpret B2 and B3?
c. If , what conclusion would you draw?

6.7. Continue with Question 6.6 but now consider the following model:

a. What is the difference between this model and the one given in Question 6.6?
b. What is the interpretation of B4 and B5?
c. If B4 and B5 are individually statistically significant, would you choose this

model over the previous one? If not, what kind of bias or error are you com-
mitting?

d. How would you test the hypothesis that B4 = B5 = 0?

PROBLEMS

6.8. Based on quarterly observations for the United States for the period 1961-I
through 1977-II, H. C. Huang, J. J. Siegfried, and F. Zardoshty14 estimated the
following demand function for coffee. (The figures in parentheses are t values.)

ln Qt = 1.2789 - 0.1647 ln Pt + 0.5115 ln It + 0.1483 ln 

t = (-2.14) (1.23) (0.55)

-0.0089T - 0.0961 D1t - 0.1570D2t - 0.0097D3t R2
= 0.80

t = (-3.36) (-3.74) (-6.03) (-0.37)

where Q = pounds of coffee consumed per capita
P = the relative price of coffee per pound at 1967 prices
I = per capita PDI, in thousands of 1967 dollars

P’ = the relative price of tea per quarter pound at 1967 prices
t = the time trend with t = 1 for 1961-I, to t = 66 for 1977-II

D1 = 1 for the first quarter
D2 = 1 for the second quarter
D3 = 1 for the third quarter
ln = the natural log

P¿t

Yi = B0 + B1Xi + B2D2i + B3D3i + B4(D2iXi) + B5(D3iXi) + ui

B2 7 B3

14See H. C. Huang, J. J. Siegfried, and F. Zardoshty, “The Demand for Coffee in the United States,
1963–1977,” Quarterly Review of Economics and Business, Summer 1980, pp. 36–50.
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a. How would you interpret the coefficients of P, I, and P’?
b. Is the demand for coffee price elastic?
c. Are coffee and tea substitute or complementary products?
d. How would you interpret the coefficient of t?
e. What is the trend rate of growth or decline in coffee consumption in the

United States? If there is a decline in coffee consumption, what accounts
for it?

f. What is the income elasticity of demand for coffee?
g. How would you test the hypothesis that the income elasticity of demand for

coffee is not significantly different from 1?
h. What do the dummy variables represent in this case?
i. How do you interpret the dummies in this model?
j. Which of the dummies are statistically significant?

k. Is there a pronounced seasonal pattern in coffee consumption in the United
States? If so, what accounts for it?

l. Which is the benchmark quarter in this example? Would the results change
if we chose another quarter as the base quarter?

m. The preceding model only introduces the differential intercept dummies.
What implicit assumption is made here?

n. Suppose someone contends that this model is misspecified because it assumes
that the slopes of the various variables remain constant between quarters.
How would you rewrite the model to take into account differential slope
dummies?

o. If you had the data, how would you go about reformulating the demand
function for coffee?

6.9. In a study of the determinants of direct airfares to Cleveland, Paul W. Bauer
and Thomas J. Zlatoper obtained the following regression results (in tabular
form) to explain one-way airfare for first class, coach, and discount airfares.
(The dependent variable is one-way airfare in dollars).
The explanatory variables are defined as follows:

Carriers = the number of carriers
Pass = the total number of passengers flown on route (all carriers)

Miles = the mileage from the origin city to Cleveland
Pop = the population of the origin city
Inc = per capita income of the origin city

Corp = the proxy for potential business traffic from the origin city
Slot = the dummy variable equaling 1 if the origin city has a slot-restricted

airport
= 0 if otherwise

Stop = the number of on-flight stops
Meal = the dummy variable equaling 1 if a meal is served

= 0 if otherwise
Hub = the dummy variable equaling 1 if the origin city has a hub airline

= 0 if otherwise
EA = the dummy variable equaling 1 if the carrier is Eastern Airlines

= 0 if otherwise
CO = the dummy variable equaling 1 if the carrier is Continental Airlines

= 0 if otherwise

208 PART ONE: THE LINEAR REGRESSION MODEL
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CHAPTER SIX: DUMMY VARIABLE REGRESSION MODELS 209

The results are given in Table 6-11.
a. What is the rationale for introducing both carriers and squared carriers as

explanatory variables in the model? What does the negative sign for carriers
and the positive sign for carriers squared suggest?

b. As in part (a), what is the rationale for the introduction of miles and squared
miles as explanatory variables? Do the observed signs of these variables
make economic sense?

DETERMINANTS OF DIRECT AIR FARES TO CLEVELAND

Explanatory variable First class Coach Discount

Carriers -19. 50 -23.00 -17.50
*t = (-0.878) (-1.99) (-3.67)

Carriers2 2.79 4.00 2.19
(0.632) (1.83) (2.42)

Miles 0.233 0.277 0.0791
(5.13) (12.00) (8.24)

Miles2
-0.0000097 -0.000052 -0.000014

(-0.495) (-4.98) (-3.23)

Pop -0.00598 -0.00114 -0.000868
(-1.67) (-4.98) (-1.05)

Inc -0.00195 -0.00178 -0.00411
(-0.686) (-1.06) (-6.05)

Corp 3.62 1.22 -1.06
(3.45) (2.51) (-5.22)

Pass -0.000818 -0.000275 0.853
(-0.771) (-0.527) (3.93)

Stop 12.50 7.64 -3.85
(1.36) (2.13) (-2.60)

Slot 7.13 -0.746 17.70
(0.299) (-0.067) (3.82)

Hub 11.30 4.18 -3.50
(0.90) (0.81) (-1.62)

Meal 11.20 0.945 1.80
(1.07) (0.177) (0.813)

EA -18.30 5.80 -10.60
(-1.60) (0.775) (-3.49)

CO -66.40 -56.50 -4.17
(-5.72) (-7.61) (-1.35)

Constant term 212.00 126.00 113.00
(5.21) (5.75) (12.40)

R 2 0.863 0.871 0.799
Number of observations 163 323 323

Note: *Figures in parentheses represent t values.
Source: Paul W. Bauer and Thomas J. Zlatoper, Economic Review, Federal

Reserve Bank of Cleveland, vol. 25, no. 1, 1989, Tables 2, 3, and 4, pp. 6–7.

TABLE 6-11
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c. The population variable is observed to have a negative sign. What is the
implication here?

d. Why is the coefficient of the per capita income variable negative in all the
regressions?

e. Why does the stop variable have a positive sign for first-class and coach
fares but a negative sign for discount fares? Which makes economic sense?

f. The dummy for Continental Airlines consistently has a negative sign. What
does this suggest?

g. Assess the statistical significance of each estimated coefficient. Note: Since
the number of observations is sufficiently large, use the normal approxima-
tion to the t distribution at the 5% level of significance. Justify your use of
one-tailed or two-tailed tests.

h. Why is the slot dummy significant only for discount fares?
i. Since the number of observations for coach and discount fare regressions is

the same, 323 each, would you pull all 646 observations and run a regres-
sion similar to the ones shown in the preceding table? If you do that, how
would you distinguish between coach and discount fare observations?
(Hint: dummy variables.)

j. Comment on the overall quality of the regression results given in the
preceding table.

6.10. In a regression of weight on height involving 51 students, 36 males and 
15 females, the following regression results were obtained:15

1. Weighti = -232.06551 + 5.5662heighti
t = (-5.2066) (8.6246)

2. Weighti = -122.9621 + 23.8238dumsexi + 3.7402heighti
t = (-2.5884) (4.0149) (5.1613)

3. Weighti = -107.9508 + 3.5105heighti + 2.0073dumsexi + 0.3263dumht.
t = (-1.2266) (2.6087) (0.0187) (0.2035)

where weight is in pounds, height is in inches, and where

Dumsex = 1 if male
= 0 if otherwise

Dumht. = the interactive or differential slope dummy

a. Which regression would you choose, 1 or 2? Why?
b. If 2 is in fact preferable but you choose 1, what kind of error are you com-

mitting?
c. What does the dumsex coefficient in 2 suggest?
d. In Model 2 the differential intercept dummy is statistically significant

whereas in Model 3 it is statistically insignificant. What accounts for this
change?

e. Between Models 2 and 3, which would you choose? Why?
f. In Models 2 and 3 the coefficient of the height variable is about the same,

but the coefficient of the dummy variable for sex changes dramatically. Do
you have any idea what is going on?

210 PART ONE: THE LINEAR REGRESSION MODEL

15A former colleague, Albert Zucker, collected these data and estimated the various regressions.
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To answer questions (d), (e), and (f) you are given the following correlation
matrix.

Height Dumsex Dumht.

Height 1 0.6276 0.6752
Dumsex 0.6276 1 0.9971
Dumht. 0.6752 0.9971 1

The interpretation of this table is that the coefficient of correlation between
height and dumsex is 0.6276 and that between dumsex and dumht. is 0.9971.

6.11. Table 6-12 on the textbook’s Web site gives nonseasonally adjusted quarterly
data on the retail sales of hobby, toy, and game stores (in millions) for the
period 1992: I to 2008: II.
Consider the following model:

Salest = B1 + B2D2t + B3D3t + B4D4t + ut

where D2 = 1 in the second quarter, = 0 if otherwise
D3 = 1 in the third quarter, = 0 if otherwise
D4 = 1 in the fourth quarter, = 0 if otherwise

a. Estimate the preceding regression.
b. What is the interpretation of the various coefficients?
c. Give a logical reason for why the results are this way.

*d. How would you use the estimated regression to deseasonalize the data?
6.12. Use the data of Problem 6.11 but estimate the following model:

Salest = B1D1t + B2D2t + B3D3t + B4D4t + ut

In this model there is a dummy assigned to each quarter.
a. How does this model differ from the one given in Problem 6.11?
b. To estimate this model, will you have to use a regression program that sup-

presses the intercept term? In other words, will you have to run a regression
through the origin?

c. Compare the results of this model with the previous one and determine
which model you prefer and why.

6.13. Refer to Eq. (6.17) in the text. How would you modify this equation to allow
for the possibility that the coefficient of Tuition also differs from region to
region? Present your results.

6.14. How would you check that in Eq. (6.19) the slope coefficient of X varies by sex
as well as race?

6.15. Reestimate Eq. (6.30) by assigning a dummy for each quarter and compare
your results with those given in Eq. (6.30). In estimating such an equation,
what precaution must you take?

*Optional.
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6.16. Consider the following model:

Yi = B1 + B2D2i + B3D3i + B4 (D2i D3i) + B5Xi + ui

where Y = the annual salary of a college teacher
X = years of teaching experience

D2 = 1 if male
= 0 if otherwise

D3 = 1 if white
= 0 if otherwise

a. The term (D2iD3i) represents the interaction effect. What does this expression
mean?

b. What is the meaning of B4?
c. Find E(Yi|D2 = 1, D3 = 1, Xi) and interpret it.

6.17. Suppose in the regression (6.1) we let

Di = 1 for female
= -1 for male

Using the data given in Table 6-2, estimate regression (6.1) with this dummy
setup and compare your results with those given in regression (6.4). What
general conclusion can you draw?

6.18. Continue with the preceding problem but now assume that

Di = 2 for female
= 1 for male

With this dummy scheme re-estimate regression (6.1) using the data of
Table 6-2 and compare your results. What general conclusions can you draw
from the various dummy schemes?

6.19. Table 6-13, found on the textbook’s Web site, gives data on after-tax corporate
profits and net corporate dividend payments ($, in billions) for the United
States for the quarterly period of 1997:1 to 2008:2.
a. Regress dividend payments (Y) on after-tax corporate profits (X) to find out

if there is a relationship between the two.
b. To see if the dividend payments exhibit any seasonal pattern, develop a

suitable dummy variable regression model and estimate it. In developing
the model, how would you take into account that the intercept as well as the
slope coefficient may vary from quarter to quarter?

c. When would you regress Y on X, disregarding seasonal variation?
d. Based on your results, what can you say about the seasonal pattern, if any,

in the dividend payment policies of U.S. private corporations? Is this what
you expected a priori?

6.20. Refer to Example 6.6. What is the regression equation for an applicant who is
an unmarried white male? Is it statistically different for an unmarried white
single female?

6.21. Continue with Problem 6.20. What would the regression equation be if you
were to include interaction dummies for the three qualitative variables in the
model?

6.22. The impact of product differentiation on rate of return on equity. To find out
whether firms selling differentiated products (i.e., brand names) experience

212 PART ONE: THE LINEAR REGRESSION MODEL
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CHAPTER SIX: DUMMY VARIABLE REGRESSION MODELS 213

higher rates of return on their equity capital, J. A. Dalton and S. L. Levin16

obtained the following regression results based on a sample of 48 firms:

se = (1.380) (0.056) (4.244) (0.017) R2
= 0.26

t = (1.079) (4.285) (-2.240) (-0.941)
p value = (0.1433) (0.000) (0.0151) (0.1759)

where Y = the rate of return on equity
D = 1 for firms with high or moderate product differentiation

X2 = the market share
X3 = the measure of firm size
X4 = the industry growth rate

a. Do firms that product-differentiate earn a higher rate of return? How do
you know?

b. Is there a statistical difference in the rate of return on equity capital be-
tween firms that do and do not product-differentiate? Show the necessary
calculations.

c. Would the answer to (b) change if the authors had used differential slope
dummies?

d. Write the equation that allows for both the differential intercept and differ-
ential slope dummies.

6.23. What has happened to the United States Phillips curve? Refer to Example 5.6.
Extending the sample to 1977, the following model was estimated:

where Y = the year-to-year percentage change in the index of hourly earnings
X = the percent unemployment rate

Dt = 1 for observations through 1969
= 0 if otherwise (i.e., for observations from 1970 through 1977)

The regression results were as follows:

se = (1.4024) (1.6859) (8.3373) (9.3999)

t = (7.1860) (-6.1314) (-2.1049) (4.0572) R2
= 0.8787

p value = (0.000) (0.000) (0.026) (0.000)

Compare these results with those given in Example 5.6.
a. Are the differential intercept and differential dummy coefficients statisti-

cally significant? If so, what does that suggest? Show the Phillips curve for
the two periods separately.

b. Based on these results, would you say that the Phillips curve is dead?

YN t = 10.078 - 10.337Dt - 17.549a
1

Xt
b + 38.137Dta

1
Xt
b

Yt = B1 + B2Dt + B3a
1

Xt
b + B4Dta

1
Xt
b + ut

YNi = 1.399 + 1.490Di + 0.246X2i - 9.507X3i - 0.016X4i

16See J. A. Dalton and S. L. Levin, “Market Power: Concentration and Market Share,” Industrial
Organization Review, vol. 5, 1977, pp. 27–36. Notations were altered to conform with our notation.
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6.24. Count R2. Since the conventional R2 value may not be appropriate for linear
probability models, one suggested alternative is the count R2, which is
defined as:

Since in LPM the dependent variable takes a value of 1 or 0, if the predicted
probability is greater than 0.5, we classify that as 1, but if the predicted proba-
bility is less than 0.5, we classify that as 0. We then count the number of correct
predictions and compute the count R2 from the formula given above.

Find the count R2 for the model (6.32). How does it compare with the con-
ventional R2 given in that equation?

6.25. Table 6-14, found on the textbook’s Web site, gives quarterly data on real per-
sonal expenditure (PCE), real expenditure on durable goods (EXPDUR), real
expenditure on nondurable goods (EXPNONDUR), and real expenditure on
services (EXPSER), for the United States for the period 2000-1 to 2008-3. All
data are in billions of (2000) dollars, and the quarterly data are at seasonally
adjusted annual rates.
a. Plot the data on EXPDUR, EXPNONDUR, and EXPSER against PCE.
b. Suppose you regress each category of expenditure on PCE and the three

dummies shown in Table 6-14. Would you expect the dummy variable
coefficients to be statistically significant? Why or why not? Present your
calculations.

c. If you do not expect the dummy variables to be statistically significant but
you still include them in your model, what are the consequences of your
action?

6.26. The Phillips curve revisited again. Refer to Example 5.6 and Problem 5.29 from
Chapter 5. It was shown that the percentage change in the index of hourly
earnings and the unemployment rate from 1958–1969 followed the traditional
Phillips curve model. The updated version of the data, from 1965–2007, can be
found in Table 5-19 on the textbook’s Web site.
a. Create a dummy variable to indicate a possible break in the data in 1982. In

other words, create a dummy variable that equals 0 from 1965 to 1982, then
set it equal to 1 for 1983 to 2007.

b. Using the inverted “percent unemployment rate”(1/X) variable created in
Chapter 5, create an interaction variable between (1/X) and the dummy
variable from part (a).

c. Include both the dummy variable and the interaction term, along with
(1/X) on its own, in a regression to predict Y, the change in the hourly earn-
ings index. What is your new model?

d. Which, if any, variables appear to be statistically significant?
e. Give a potential economic reason for this result.

6.27. Table 6-15 on the textbook’s Web site contains data on 46 mid-level employees
and their salaries. The available independent variables are:
Experience = years of experience at the current job
Management = 0 for nonmanagers and 1 for managers
Education = 1 for those whose highest education level is high school

2 for those whose highest education level is college
3 for those whose highest education level is graduate school

Count R2
=

number of correct predictions

total number of observations

214 PART ONE: THE LINEAR REGRESSION MODEL
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CHAPTER SIX: DUMMY VARIABLE REGRESSION MODELS 215

a. Does it make sense to utilize Education as it is listed in the data? What are
the issues with leaving it this way?

b. After addressing the issues in part (a), run a linear regression using
Experience, Management, and the changed Education variables. What is
the new model? Are all the variables significant?

c. Now create a model to allow for the possibility that the increase in Salary
may be different between managers and nonmanagers, with respect to their
years of experience. What are the results?

*d. Finally, create a model that incorporates the idea that Salary might increase,
with respect to years of experience, at a different rate between employees
with different education levels.

6.28. Based on the Current Population Survey (CPS) of March 1995, Paul Rudd
extracted a sample of 1289 workers, aged 18 to 65, and obtained the following
information on each worker:

Wage = hourly wage in $
Age = age in years

Female = 1 if female worker
Nonwhite = 1 if a nonwhite worker

Union = 1 if a union member
Education = years of schooling

Experience = potential labor market experience in years.17

The full data set can be found as Table 6-16 on the textbook’s Web site.
a. Based on these data, estimate the following model, obtaining the usual

regression statistics.

ln Wagei = B1 + B2 Age + B3 Female + B4 Nonwhite + B5 Union + B6 Education 
+ B7 Experience + ui

where ln Wage = (natural logarithm of Wage)
b. How do you interpret each regression coefficient?
c. Which of these coefficients are statistically significant at the 5% level? Also

obtain the p value of each estimated t value.
d. Do union workers, on average, earn a higher hourly wage?
e. Do female workers, on average, earn less than their male counterparts?
f. Is the average hourly wage of female nonwhite workers lower than the

average hourly wage of female white workers? How do you know? (Hint:
interaction dummy.)

g. Is the average hourly wage of female union workers higher than the aver-
age hourly wage of female non-union workers? How do you know?

h. Using the data, develop alternative specifications of the wage function,
taking into account possible interactions between dummy variables and
between dummy variables and quantitative variables.

*Optional.
17Paul R. Rudd, An Introduction to Classical Econometric Theory, Oxford University Press, New

York, 2000, pp. 17–18. These data are derived from the Data Extraction System (DES) of the Census
Bureau: http://www.census.gov/DES/www/welcome.html.
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