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APPENDIX D
STATISTICAL INFERENCE:

ESTIMATION AND
HYPOTHESIS TESTING

Equipped with the knowledge of probability; random variables; probability
distributions; and characteristics of probability distributions, such as expected
value, variance, covariance, correlation, and conditional expectation, in this
appendix we are now ready to undertake the important task of statistical
inference. Broadly speaking, statistical inference is concerned with drawing
conclusions about the nature of some population (e.g., the normal) on the basis
of a random sample that has supposedly been drawn from that population.
Thus, if we believe that a particular sample has come from a normal population
and we compute the sample mean and sample variance from that sample, we
may want to know what the true (population) mean is and what the variance of
that population may be.

D.1 THE MEANING OF STATISTICAL INFERENCE1

As noted previously, the concepts of population and sample are extremely impor-
tant in statistics. Population, as defined in Appendix A, is the totality of all possible
outcomes of a phenomenon of interest (e.g., the population of New York City). A
sample is a subset of a population (e.g., the people living in Manhattan, which is
one of the five boroughs of the city). Statistical inference, loosely speaking, is the
study of the relationship between a population and a sample drawn from that
population. To understand what this means, let us consider a concrete example.

1Broadly speaking, there are two approaches to statistical inference, Bayesian and classical. The
classical approach, as propounded by statisticians Neyman and Pearson, is generally the ap-
proach that a beginning student in statistics first encounters. Although there are basic philosophi-
cal differences in the two approaches, there may not be gross differences in the inferences that 
result.
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Table D-1 gives data on the price to earnings ratio—the famous P/E ratio—for
28 companies listed on the New York Stock Exchange (NYSE) for February 2,
2004 (at about 3 p.m.).2 Assume that this is a random sample from the universe
(population) of stocks listed on the NYSE, some 3000 or so. The P/E ratio of
27.96 for Alcoa (AA) listed in this table, for example, means that on that day the
stock was selling at about 28 times its annual earnings. The P/E ratio is one of
the key indicators for investors in the stock market.

Suppose our primary interest is not in any single P/E ratio, but in the aver-
age P/E ratio in the entire population of the NYSE listed stocks. Since we can
obtain data on the P/E ratios of all the stocks listed on the NYSE, in principle,
we can easily compute the average P/E ratio. In practice, that would be time-
consuming and expensive. Could we use the data given in Table D-1 to com-
pute the average P/E ratio of the 28 companies listed in this table and use this
(sample) average as an estimate of the average P/E ratio in the entire popula-
tion of the stocks listed on the NYSE? Specifically, if we let X = P/E ratio of a
stock and = the average P/E ratio of the 28 stocks given in Table D-1, can
we tell what the expected P/E ratio, E(X), is in the NYSE population as a whole?
This process of generalizing from the sample value (e.g., ) to the population value
(e.g., E[X]) is the essence of statistical inference. We will now discuss this topic in
some detail.

X

X

488 APPENDIXES

PRICE TO EARNINGS (P/E) RATIOS OF 28 COMPANIES 
ON THE NEW YORK STOCK EXCHANGE (NYSE)

Company P/E Company P/E

AA 27.96 INTC 36.02
AXP 22.90 IBM 22.94
T 8.30 JPM 12.10
BA 49.78 JNJ 22.43
CAT 24.68 MCD 22.13
C 14.55 MRK 16.48
KO 28.22 MSFT 33.75
DD 28.21 MMM 26.05
EK 34.71 MO 12.21
XOM 12.99 PG 24.49
GE 21.89 SBC 14.87
GM 9.86 UTX 14.87
HD 20.26 WMT 27.84
HON 23.36 DIS 37.10
Mean = 23.25, variance = 90.13, standard deviation = 9.49

Source: www.stockselector.com.

TABLE D-1

2Since the price of the stock varies from day to day, the P/E ratio will vary from day to day, even
though the earnings do not change. The stocks given in this table are members of the so-called
Dow 30. In reality stock prices change very frequently when the stock market is open, but most
newspapers quote the P/E ratios as of the end of the business day.
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D.2 ESTIMATION AND HYPOTHESIS TESTING:TWIN BRANCHES
OF STATISTICAL INFERENCE

From the preceding discussion it can be seen that statistical inference proceeds
along the following lines. There is some population of interest, say, the stocks
listed on the NYSE, and we are interested in studying some aspect of this
population, say, the P/E ratio. Of course, we may not want to study each and
every P/E ratio, but only the average P/E ratio. Since collecting information on
all the NYSE P/E ratios needed to compute the average P/E ratio is expensive
and time-consuming, we may obtain a random sample of only a few stocks to
get the P/E ratio of each of these sampled stocks and compute the sample
average P/E ratio, say, . is an estimator, also known as a (sample) statis-
tic, of the population average P/E ratio, E(X), which is called the (population)
parameter. (Refer to the discussion in Appendix B). For example, the mean
and variance are the parameters of the normal distribution. A particular nu-
merical value of the estimator is called an estimate (e.g., an value of 23).
Thus, estimation is the first step in statistical inference. Having obtained an
estimate of a parameter, we next need to find out how good that estimate is,
for an estimate is not likely to equal the true parameter value. If we obtain two
or more random samples of 28 stocks each and compute for each of these
samples, the two estimates will probably not be the same. This variation in
estimates from sample to sample is known as sampling variation or sampling
error.3 Are there any criteria by which we can judge the “goodness” of an esti-
mator? In Section D.4 we discuss some of the commonly used criteria to judge
the goodness of an estimator.

Whereas estimation is one side of statistical inference, hypothesis testing is
the other. In hypothesis testing we may have prior judgment or expectation
about what value a particular parameter may assume. For example, prior
knowledge or an expert opinion tells us that the true average P/E ratio in the
population of NYSE stocks is, say, 20. Suppose a particular random sample of
28 stocks gives this estimate as 23. Is this value of 23 close to the hypothesized
value of 20? Obviously, the number 23 is different from the number 20. But the
important question here is this: Is 23 statistically different from 20? We know that
because of sampling variation there is likely to be a difference between a
(sample) estimate and its population value. It is possible that statistically the
number 23 may not be very different from the number 20, in which case we
may not reject the hypothesis that the true average P/E ratio is 20. But how do
we decide that? This is the essence of the topic of hypothesis testing, which we
will discuss in Section D.5.

With these preliminaries, let us examine the twin topics of estimation and
hypothesis testing in some detail.

X

X

XX
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3Notice that this sampling error is not deliberate, but it occurs because we have a random 
sample and the elements included in the sample will vary from sample to sample. This is inevitable
in any analysis based on a sample.
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D.3 ESTIMATION OF PARAMETERS

In Appendix C we considered several theoretical probability distributions.
Often we know or are willing to assume that a random variable X follows a
particular distribution, but we do not know the value(s) of the parameter(s) of
the distribution. For example, if X follows the normal distribution, we may
want to know the values of its two parameters, namely, the mean E(X)
and the variance . To estimate these unknowns, the usual procedure is to as-
sume that we have a random sample of size n from the known probability distri-
bution and to use the sample to estimate the unknown parameters. Thus, we
can use the sample mean as an estimate of the population mean (or expected
value) and the sample variance as an estimate of the population variance. This
procedure is known as the problem of estimation. The problem of estimation can
be broken down into two categories: point estimation and interval estimation.

To fix the ideas, assume that the random variable (r.v.), X (P/E ratio), is
normally distributed with a certain mean and a certain variance, but for now
we do not know the values of these parameters. Suppose, however, we have a
random sample of 28 P/E ratios (28 X’s) from this normal population, as shown
in Table D-1.

How can we use these sample data to compute the population mean value
= E(X) and the population variance More specifically, suppose our

immediate interest is in finding out .4 How do we go about it? An obvious
choice is the sample mean of the 28 P/E ratios shown in Table D-1, which is
23.25. We call this single numerical value the point estimate of , and the for-
mula that we used to compute this point estimate is called the
point estimator, or statistic. Notice that a point estimator, or a statistic, is an r.v., as
its value will vary from sample to sample. (Recall our sampling experiment in
Example C-6.) Therefore, how reliable is a specific estimate such as 23.25 of the
true ? In other words, how can we rely on just one estimate of the true popu-
lation mean? Would it not be better to state that although is the single best
guess of the true population mean, the interval, say, from 19 to 24, most likely
includes the true ? This is essentially the idea behind interval estimation. We
will now consider the actual mechanics of obtaining interval estimates.

The key idea underlying interval estimation is the notion of sampling, or
probability, distribution of an estimator such as the sample mean , which we
have already discussed in Appendix C. In Appendix C we saw that if an r.v.

then

(D.1)

or

(D.2)Z =

(X - �X)
�X>1n

 '  N(0, 1)

X ' a�X,  
�2

X

n
b

X ' N(�X, �2
X),

X

�X

X
�X

X = g28
1  Xi>n

�X

X
�X

�2
X?�X

�2
X

= �X
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4This discussion can be easily extended to estimate .�2
X
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That is, the sampling distribution of the sample mean also follows the normal
distribution with the stated parameters.5

As pointed out in Appendix C, is not generally known, but if we use its
estimator , then we know that

(D.3)

follows the t distribution with (n - 1) degrees of freedom (d.f.).
To see how Equation (D.3) helps us to obtain an interval estimation of the 

of our P/E example, note that we have a total of 28 observations and, therefore,
27 d.f. Now if we consult the t table (Table E-2) given in Appendix E, we notice
that for 27 d.f.,

(D.4)

as shown in Figure D-1. That is, for 27 d.f., the probability is 0.95 (or 95 percent)
that the interval (-2.052, 2.052) will include the t value computed from Eq. (D.3).6

These t values, as we will see shortly, are known as critical t values; they show
what percentage of the area under the t distribution curve (see Figure D-1) lies
between those values (note that the total area under the curve is 1); t = -2.052
is called the lower critical t value and t = 2.052 is called the upper critical t value.

Now substituting the t value from Eq. (D.3) into Eq. (D.4), we obtain

(D.5)

Simple algebraic manipulation will show that Equation (D.5) can be expressed
equivalently as

(D.6)PaX - 2.052
Sx

1n
… �X … X + 2.052

Sx

1n
b = 0.95

Pa -2.052 …

(X - �X)
Sx>1n

… 2.052b

P(-2.052 … t … 2.052) = 0.95

�X

t =

(X - �X)
Sx>1n

S2
x = g (Xi - X)2

>(n - 1)
�2

X

X
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2.5%

−2.052

2.5%

2.0520

The t distribution for 27 d.f.FIGURE D-1

5Note that if X does not follow the normal distribution, will follow the normal distribution à
la the central limit theorem if n, the sample size, is sufficiently large.

6Needless to say, these values will depend on the d.f. as well as on the level of probability used.
For example, for the same d.f. P(-2.771 … t … 2.771) = 0.99.

X
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Equation (D.6) provides an interval estimator of the true .
In statistics we call Eq. (D.6) a 95% confidence interval (CI) for the true but

unknown population mean and 0.95 is called the confidence coefficient.
In words, Eq. (D.6) says that the probability is 0.95 that the random interval

contains the true . is called the lower
limit of the interval and is the upper limit of the interval.
See Figure D-2.

Before proceeding further, note this important point: The interval given in
Eq. (D.6) is a random interval because it is based on and , which will
vary from sample to sample. The true or population mean , although un-
known, is some fixed number and therefore is not random. Thus, one should not
say that the probability is 0.95 that lies in this interval. The correct statement, as
noted earlier, is that the probability is 0.95 that the random interval, Eq. (D.6), contains
the true . In short, the interval is random and not the parameter .

Returning to our P/E example of Table D-1, we have , and 
Sx = 9.49. Plugging these values into Eq. (D.6), we obtain

which yields

(D.7)

as the 95% confidence interval for .�X

19.57 … �X … 26.93 (approx)

23.25 -

(2.052)(9.49)

228
… �X … 23.25 +

(2.052)(9.49)

228

n = 28, X = 23.25
�X�X

�X

�X

Sx>1nX

(X + 2.0096Sx>1n)
(X - 2.052Sx>1n)�X(X ;  2.052Sx>1n)

�X

�X
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X

(a)

95%

X

(b)

99%

X − 2.052 
Sx

�n
X + 2.052 

Sx

�n

X − 2.771 
Sx

�n
X + 2.771 

Sx

�n

(a) 95% and (b) 99% confidence intervals for for 27 d.f.�XFIGURE D-2
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Equation (D.7) says, in effect, that if we construct intervals like Eq. (D.7),
say, 100 times, then 95 out of 100 such intervals will include the true .7

Incidentally, note that for our P/E example the lower limit of the interval is 19.57
and the upper limit is 26.93.

Thus, interval estimation, in contrast to point estimation (such as 23.25), provides
a range of values that will include the true value with a certain degree of confidence
or probability (such as 0.95). If we have to give one best estimate of the true
mean, it is the point estimate 23.25, but if we want to be less precise we can
give the interval (19.57 to 26.93) as the range that most probably includes the
true mean value with a certain degree of confidence (95 percent in the present
instance).

More generally, suppose X is an r.v. with some probability distribution func-
tion (PDF). Suppose further that we want to estimate a parameter of this distri-
bution, say, its mean value . Toward that end, we obtain a random sample of
n values, , and compute two statistics (or estimators) L and U
from this sample such that

(D.8)

That is, the probability is that the random interval from L to U contains
the true . L is called the lower limit of the interval and U is called the upper
limit. This interval is known as a confidence interval of size for (or
any parameter for that matter), and is known as the confidence coefficient.
If , meaning that if we construct a confidence interval
with a confidence coefficient of 0.95, then in repeated such constructions, 95
out of 100 intervals can be expected to include the true . In practice,
is often multiplied by 100 to express it in percent form (e.g., 95 percent). In
statistics alpha ( ) is known as the level of significance, or, alternatively, the
probability of committing a type I error, which is defined and discussed in
Section D.5.

Now that we have seen how to establish confidence intervals, what do we do
with them? As we will see in Section D.5, confidence intervals make our task of
testing hypotheses—the twin of statistical inference—much easier.

D.4 PROPERTIES OF POINT ESTIMATORS

In the P/E example we used the sample mean as a point estimator of , as
well as to obtain an interval estimator of . But why did we use ? It is wellX�X

�XX

�

(1 - �)�X

� = 0.05, (1 - �) = 0.95
(1 - �)

�X(1 - �)
�X

(1 - �)

P(L … �X … U) = 1 - �  0 6 � 6 1

X1, X2, Á , Xn

�X

�X
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7Be careful again. We cannot say that the probability is 0.95 that the particular interval in Eq. (D.7)
includes the true ; it may or may not. Therefore, statements like are
not permissible under the classical approach to hypothesis testing. Intervals like those in Eq. (D.7) are to be
interpreted in the repeated sampling sense that if we construct such intervals a large number of
times, then 95 percent of such intervals will include the true mean value; the particular interval in
Eq. (D.7) is just one realization of the interval estimator in Eq. (D.6).

P(19.5 … �X … 26.93) = 0.95�X
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known that besides the sample mean, the (sample) median or the (sample)
mode also can be used as point estimators of .8

In practice, the sample mean is the most frequently used measure of the pop-
ulation mean because it satisfies several properties that statisticians deem
desirable. Some of these properties are:

1. Linearity
2. Unbiasedness
3. Minimum variance
4. Efficiency
5. Best linear unbiased estimator (BLUE)
6. Consistency

We will now discuss these properties somewhat heuristically.

Linearity

An estimator is said to be a linear estimator if it is a linear function of the sample
observations. The sample mean is obviously a linear estimator because

is a linear function of the observations, the X’s. (Note: The X’s appear with an
index or power of 1 only.)

In statistics a linear estimator is generally much easier to deal with than a
nonlinear estimator.

Unbiasedness

If there are several estimators of a population parameter (i.e., several methods
of estimating that parameter), and if one or more of these estimators on the
average coincide with the true value of the parameter, we say that such estima-
tors are unbiased estimators of that parameter. Put differently, if in repeated
applications of a method the mean value of the estimators coincides with the
true parameter value, that estimator is called an unbiased estimator. More for-
mally, an estimator, say, , is an unbiased estimator of if

(D.9)E(X) = �X

�XX

X = a
n

i=1

Xi

n
=

1
n

 (X1 + X2 +
.  .  .

+ Xn)

�X
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8The median is that value of a random variable that divides the total PDF into two halves such 
that half the values in the population exceed it and half are below it. To compute the median from a
sample, arrange the observations in increasing order; the median is the middle value in this order. 
For example, if we have observations 7, 3, 6, 11, 5 and rearrange them in increasing order, we
obtain 3, 5, 6, 7, 11. The median, or the middlemost value, here is 6. The mode is the most popular or 
frequent value of the random variable. For example, if we have observations 3, 5, 7, 5, 8, 5, 9, the modal
value is 5 since it occurs most frequently.
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as shown in Figure D-3. If this is not the case, however, then we call that esti-
mator a biased estimator, such as the estimator X* shown in Figure D-3.

Example D.1. 

Let then, as we saw in Appendix C. , based on a random
sample of size n from this population, is distributed with mean 
and var . Thus, the sample mean is an unbiased estimator of
true . If we draw repeated samples of size n from this normal population
and compute for each sample, then on the average, will coincide with .
But notice carefully that we cannot say that in a single sample, such as the
one in Table D-1, the computed mean of 23.25 will necessarily coincide with
the true mean value.

Example D.2.

Again, let and suppose we draw a random sample of size n
from this population. Let Xmed represent the median value of this sample. It
can be shown that E(Xmed) � . In words, the median from this population
is also an unbiased estimator of the true mean. Notice also that unbiasedness
is a repeated sampling property; that is, if we draw several samples of size n
from this population and compute the median value for each sample, then
the average of the median values obtained will tend to approach .

Minimum Variance

Figure D-4 shows the sampling distributions of three estimators of , obtained
from three different estimators, and .

Now an estimator of, say, , is said to be a minimum-variance estimator
if its variance is smaller than any other estimator of . As you can see from
Fig. D-4, the variance of is the smallest of the three estimators shown there.
Hence, it is a minimum-variance estimator. But note that is a biased esti-
mator. (Why?)

N�3

N�3

�X

�X

N�3N�2N�1,
�X

�X

�X

Xi
' N(�X, �2

X),

�XXX
�X

X(X) = �2
X>n

E(X) = �X

XXi '  N(�X, �2
X),
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Biased
Estimator

Unbiased
Estimator

E (X  ) ≠ μX
* E (X) = μX

Biased (X*) and unbiased estimators of population mean value, �X(X)FIGURE D-3
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Efficiency

The property of unbiasedness, although desirable, is not adequate by itself.
What happens if we have two or more estimators of a parameter and they are
all unbiased? How do we choose among them?

Suppose we have a random sample of n values of an r.v. X such that each
. Let and Xmed be the mean and median values obtained from

this sample. We already know that

(D.10)

It can also be shown that if the sample size is large,

Xmed (D.11)

where (approx.). That is, in large samples, the median computed from
a random sample of a normal population also follows a normal distribution
with the same mean but with a variance that is larger than the variance of 
by the factor , which can be visualized from Figure D-5. As a matter of fact,
by forming the ratio

(D.12)

we show that the variance of the sample median is 57 percent larger than the
variance of the sample mean.

Now given Figure D-5 and the preceding discussion, which estimator would
you choose? Common sense suggests that we choose over Xmed, for although
both estimators are unbiased, has a smaller variance than Xmed. Therefore if
we use in repeated sampling, we will estimate more accurately than if we
were to use the sample median. In short, provides a more precise estimate of
the population mean than the median Xmed. In statistical language we say that

is an efficient estimator. Stated more formally, if we consider only unbiased esti-
mators of a parameter, the one with the smallest variance is called the best, or efficient,
estimator.

X

X
�XX

X
X

L

var (Xmed)
var (X)

=

�

2
 
�2
>n

�2
>n

=

�

2
= 1.571    (approx)

�>2
X�X

� = 3.142

' N(�X, (p>2)(�2
>n))

X ' N(�X, �2
>n)

XX ' N(�X, �2
X)
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μX

f (μ̂2)

f (μ̂1)

f (μ̂3)

Distribution of three estimators of �XFIGURE D-4
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Best Linear Unbiased Estimator (BLUE)

In econometrics the property that is frequently encountered is the property best
linear unbiased estimator, or BLUE for short. If an estimator is linear, is unbiased,
and has minimum variance in the class of all linear unbiased estimators of a parameter,
it is called a best linear unbiased estimator. Obviously, this property combines the
properties of linearity, unbiasedness, and minimum variance. In Chapters 3 and
4 we will see the importance of this property.

Consistency

To explain the property of consistency, suppose and we draw a
random sample of size n from this population. Now consider two estimators of .

(D.13)

(D.14)

The first estimator is the usual sample mean. Now, as we already know

and it can be shown that

(D.15)

Since E(X*) is not equal to , X* is obviously a biased estimator. (For proof, see
Problem D. 21.)

But suppose we increase the sample size. What would you expect? The
estimators and X* differ only in that the former has n in the denominator
whereas the latter has . But as the sample increases, we should not find(n + 1)

X

�X

E(X*) = a
n

n + 1
b  �X

E(X) = �X

X*
= a

Xi

n + 1

X = a
Xi

n

�X

X ' N(�X, �2
X)
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Distribution of sample mean 

Distribution of sample median 

X

E (X) =   
X

E (Xmed) =   
X

μ

μ

μ

An example of an efficient estimator (sample mean)FIGURE D-5
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much difference between the two estimators. That is, as the sample size
increases, X* also will approach the true . In statistics such an estimator is
known as a consistent estimator. Stated more formally, an estimator (e.g., X*) is
said to be a consistent estimator if it approaches the true value of the parameter as the
sample size gets larger and larger. As we will see in the main chapters of the text,
sometimes we may not be able to obtain an unbiased estimator, but we can obtain
a consistent estimator.9 The property of consistency is depicted in Figure D-6.

D.5 STATISTICAL INFERENCE: HYPOTHESIS TESTING

Having studied in some detail the estimation branch of statistical inference, we
will now consider its twin, hypothesis testing. Although the general nature of
hypothesis testing was discussed earlier, we study it here in some detail.

Let us return to the P/E example given in Table D-1. In Section D.3, based on
a random sample of 28 P/E ratios, we established a 95% confidence interval
for , the true but unknown average P/E ratio in the population of the stocks
listed on the NYSE. Now let us reverse our strategy. Instead of establishing a

�X

�X

498 APPENDIXES

f (X*) n = 100

f (X*) n = 80

f (X*) n = 50

f (X*) n = 25

P
ro

b
ab

il
it

y 
D

en
si

ty

μ
X

The property of consistency. The behavior of the estimator X * of
population mean X as the sample size increases�

FIGURE D-6

9Note the critical difference between an unbiased and a consistent estimator. If we fix the sample
size and draw several random samples of an r.v. from some probability distribution to estimate a
parameter of this distribution, then unbiasedness requires that on the average we should be able to
obtain the true parameter value. In establishing consistency, on the other hand, we see the behav-
ior of an estimator as the sample size increases. If a sample size is reasonably large and the estima-
tor based on that sample size approaches the true parameter value, then that estimator is a
consistent estimator.
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confidence interval, suppose we hypothesize that the true takes a particular
numerical value (e.g., . Our task now is to test this hypothesis.10 How
do we test this hypothesis—that is, support or refute it?

In the language of hypothesis testing a hypothesis such as is called a
null hypothesis and is generally denoted by the symbol H0. Thus, .
The null hypothesis is usually tested against an alternative hypothesis, denoted
by the symbol H1. The alternative hypothesis can take one of these forms:

H1: 18.5, which is called a one-sided or one-tailed alternative hypothe-
sis, or

H1: , also a one-sided or one-tailed alternative hypothesis, or
, whichiscalledacomposite,two-sided,ortwo-tailed alternative

hypothesis. That is, the true mean value is either greater than or less than 18.5.11

To test the null hypothesis (against the alternative hypothesis), we use the
sample data (e.g., the sample average P/E ratio of 23.25 obtained from the sample
in Table D-1) and statistical theory to develop decision rules that will tell us
whether the sample evidence supports the null hypothesis. If the sample
evidence supports the null hypothesis, we do not reject H0, but if it does not, we
reject H0. In the latter case we may accept the alternative hypothesis, H1.

How do we develop these decision rules? There are two complementary
approaches: (1) confidence interval and (2) test of significance. We illustrate
each with the aid of our P/E example. Assume that

(a two-sided hypothesis)

The Confidence Interval Approach to Hypothesis Testing

To test the null hypothesis, suppose we have the sample data given in Table D-1.
From these data we computed the sample mean of 23.25. We know from our
discussion in Section D.3 that the sample mean is distributed normally with
mean and variance . But since the true variance is unknown, we replace
it with the sample variance, in which case we know that the sample mean
follows the t distribution, as shown in Eq. (D.3). Based on the t distribution, we
obtain the following 95% confidence interval for:

(D.16) (D.7)

We know that confidence intervals provide a range of values that may include
the true with a certain degree of confidence, such as 95 percent. Therefore, if�X

�19.57 … �X … 26.93

�X
2 /n�X

H1:�X Z 18.5

H0:�X = 18.5

H1:�X Z 18.5
�X 6 18.5

�X 7

H0: �X = 18.5
�X = 18.5

�X = 18.5)
�X

APPENDIX D: STATISTICAL INFERENCE: ESTIMATION AND HYPOTHESIS TESTING 499

10A hypothesis is “something considered to be true for the purpose of investigation or argument”
(Webster’s), or a “supposition made as a basis for reasoning, or as a starting point for further
investigation from known facts” (Oxford English Dictionary).

11There are various ways of stating the null and alternative hypotheses. For example, we could
have and .H1: �X 6 13H0:�X Ú 13
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this interval does not include a particular null hypothesized value such as
18.5, could we not reject this null hypothesis? Yes, we can, with 95% confidence.

From the preceding discussion it should be clear that the topics of confidence
interval and hypothesis testing are intimately related. In the language of
hypothesis testing, the 95% confidence interval shown in inequality (D.7) (see
Fig. D-2) is called the acceptance region and the area outside the acceptance
region is called the critical region, or the region of rejection, of the null hypoth-
esis. The lower and upper limits of the acceptance region are called critical
values. In this language, if the acceptance region includes the value of the
parameter under H0, we do not reject the null hypothesis. But if it falls outside
the acceptance region (i.e., it lies within the rejection region), we reject the null
hypothesis. In our example we reject the null hypothesis that since
the acceptance region given in Eq. (D.7) does not include the null-hypothesized
value. It should be clear now why the boundaries of the acceptance region are
called critical values, for they are the dividing line between accepting and
rejecting a null hypothesis.

Type I and Type II Errors: A Digression

In our P/E example we rejected because our sample evidence of
does not seem to be compatible with this hypothesis. Does this mean

that the sample shown in Table D-1 did not come from a normal population
whose mean value was 18.5? We cannot be absolutely sure, for the confidence
interval given in inequality (D.7) is 95 and not 100 percent. If that is the case,
we would be making an error in rejecting . In this case we are
said to commit a type I error, that is, the error of rejecting a hypothesis when it is
true. By the same token, suppose , in which case, as inequality (D.7)
shows, we would not reject this null hypothesis. But quite possibly the sample
in Table D-1 did not come from a normal distribution with a mean value of 21.
Thus, we are said to commit a type II error, that is, the error of accepting a false
hypothesis. Schematically,

Reject H0 Do not reject H0

H0 is true Type I error Correct decision
H0 is false Correct decision Type II error

Ideally, we would like to minimize both these errors. But, unfortunately, for
any given sample size,12 it is not possible to minimize both errors simultaneously.
The classical approach to this problem, embodied in the work of statisticians
Neyman and Pearson, is to assume that a type I error is likely to be more serious
in practice than a type II error. Therefore, we should try to keep the probability

H0:�X = 21

H0:�X = 18.5

X = 23.25
H0:�X = 18.5

�X = 18.5

�X =

500 APPENDIXES

12The only way to decrease a type II error without increasing a type I error is to increase the sam
ple size, which may not always be easy.
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of committing a type I error at a fairly low level, such as 0.01 or 0.05, and then
try to minimize a type II error as much as possible.13

In the literature the probability of committing a type I error is designated as
and is called the level of significance,14 and the probability of committing a

type II error is designated as . Symbolically,

Type I error prob. (rejecting is true)

Type II error prob. (accepting is false)

The probability of not committing a type II error, that is, rejecting H0 when it is
false, is , which is called the power of the test.

The standard, or classical, approach to hypothesis testing is to fix at levels
such as 0.01 or 0.05 and then try to maximize the power of the test; that is, to
minimize . How this is actually accomplished is involved, and so we leave the
subject for the references.15 Suffice it to note that, in practice, the classical
approach simply specifies the value of without worrying too much about .
But keep in mind that, in practice, in making a decision there is a trade-off
between the significance level and the power of the test. That is, for a given
sample size, if we try to reduce the probability of a type I error, we ipso facto
increase the probability of a type II error and therefore reduce the power of the
test. Thus, instead of using percent, if we were to use percent, we
may be very confident when we reject , but we may not be so confident when
we do not reject it.

Since the precedent point is important, let us illustrate. For our P/E ratio
example, in Eq. (D.7) we established a 95% confidence. Let us still assume that

but now fix percent and obtain the 99% confidence
interval, which is (noting that for 99% CI, the critical t values are (-2.771, 2.771)
for 27 d.f.):

(D.17)

This 99% confidence interval is also shown in Fig. D-2. Obviously, this interval
is wider than the 95% confidence interval. Since this interval includes the
hypothesized value of 18.5, we do not reject the null hypothesis, whereas in
Eq. (D.7) we rejected the null hypothesis on the basis of a 95% confidence
interval. What now? By reducing a type I error from 5 percent to 1 percent, we
have increased the probability of a type II error. That is, in not rejecting the null
hypothesis on the basis of Eq. (D.17), we may be falsely accepting the hypothesis

18.28 … �X … 28.22

� = 1H0:�X = 18.5

H0

� = 1� = 5

��

�

�
(1 - �)

H0 ƒ H0= � =

H0  ƒ  H0= � =

�
�

APPENDIX D: STATISTICAL INFERENCE: ESTIMATION AND HYPOTHESIS TESTING 501

13To Bayesian statisticians this procedure sounds rather arbitrary because it does not consider
carefully the relative seriousness of the two types of errors. For further discussion of this and related
points, see Robert L. Winkler, Introduction to Bayesian Inference and Decision, Holt, Rinehart and
Winston, New York, 1972, Chap. 7.

14 is also known as the size of the (statistical) test.
15For a somewhat intuitive discussion of this topic, see Gujarati and Porter, Basic Econometrics,

5th ed., McGraw-Hill, New York, 2009, pp. 833–835. Statistical packages, such as MINITAB, can
calculate the power of a test of size .�

�
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that the true is 18.5. So, always keep in mind the trade-off involved between
type I and type II errors.

You will recognize that the confidence coefficient discussed earlier is
simply 1 minus the probability of committing a type I error. Thus, a 95%
confidence coefficient means that we are prepared to accept at most a 5 percent
probability of committing a type I error—we do not want to reject the true
hypothesis by more than 5 out of 100 times. In short, a 5% level of significance or a
95% level or degree of confidence means the same thing.

Let us consider another example to illustrate further the confidence interval
approach to hypothesis testing.

Example D.3.

The number of peanuts contained in a jar follows the normal distribution,
but we do not know its mean and standard deviation, both of which are
measured in ounces. Twenty jars were selected randomly and it was found
that the sample mean was 6.5 ounces and the sample standard deviation was
2 ounces. Test the hypothesis that the true mean value is 7.5 ounces against
the hypothesis that it is different from 7.5. Use .
Answer: Letting X denote the number of peanuts in a jar, we are given that

, both parameters being unknown. Since the true variance is
unknown, if we use its estimator , it follows that

That is, the t distribution with 19 d.f.
From the t distribution table given in Table E-2 in Appendix E, we observe

that for 19 d.f.,

Then from expression (D.6) we obtain

Substituting into this inequality, we obtain

(approx.) (D.18)

as the 99% confidence interval for . Since this interval includes the
hypothesized value of 7.5, we do not reject the null hypothesis that the true

.

The null hypothesis in our P/E example was and the alternative
hypothesis was that , which is a two-sided, or composite, hypothesis.�X Z 18.5

�X = 18.5

�X = 7.5

�X

5.22 … �X … 7.78

X = 6.5, Sx = 2, and n = 20

PaX - 2.861
Sx

220
… �X … X + 2.861

Sx

220
b = 0.99

P(-2.861 … t … 2.861) = 0.99

t =

X - �X

Sx/2n
' t19

Sx
2

X ' N(mX, �X
2 )

� = 1%

(1 - �)

�X
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How do we handle one-sided alternative hypotheses such as or
? Although the confidence interval approach can be easily adapted to

construct one-sided confidence intervals, in practice it is much easier to use the
test of significance approach to hypothesis testing, which we will now discuss.

The Test of Significance Approach to Hypothesis Testing

The test of significance is an alternative, but complementary and perhaps
shorter, approach to hypothesis testing. To see the essential points involved,
return to the P/E example and Eq. (D.3). We know that

(D.19) (D.3)

follows the t distribution with d.f. In any concrete application we will
know the values of , and n. The only unknown value is . But if we
specify a value for , as we do under H0, then the right-hand side of Eq. (D.3)
is known, and therefore we will have a unique t value. And since we know that
the t of Eq. (D.3) follows the t distribution with , we simply look up the
t table to find out the probability of obtaining such a t value.

Observe that if the difference between and is small (in absolute terms),
then, as Eq. (D.3) shows, the value will also be small, where means the
absolute t value. In the event that , t will be zero, in which case we do
not reject the null hypothesis. Therefore, as the value increasingly deviates from
zero, we will tend to reject the null hypothesis. As the t table shows, for any given
d.f., the probability of obtaining an increasingly higher value becomes
progressively smaller. Thus, as gets larger, we will be more and more inclined to
reject the null hypothesis. But how large must be before we can reject the null
hypothesis? The answer, as you would suspect, depends on , the probability of
committing a type I error, as well as on the d.f., as we will demonstrate shortly.

This is the general idea behind the test of significance approach to hypothe-
sis testing. The key idea here is the test statistic—the t statistic—and its proba-
bility distribution under the hypothesized value of . Appropriately, in the
present instance the test is known as the t test since we use the t distribution.
(For details of the t distribution, see Section C.2).

In our P/E example and . Let and
, as before. Therefore,

(D.20)

Is the computed t value such that we can reject the null hypothesis? We cannot
answer this question without first specifying what chance we are willing to take
if we reject the null hypothesis when it is true. In other words, to answer this
question, we must specify , the probability of committing a type I error.
Suppose we fix at 5 percent. Since the alternative hypothesis is two-sided,
we want to divide the risk of a type I error equally between the two tails of the

�
�

t =

23.25 - 18.5

9.49/228
= 2.6486

H1:�X Z 18.5
H0:�X = 18.5n = 28X = 23.25, Sx = 9.49

�X

�
ƒ t ƒ

ƒ t ƒ
ƒ t ƒ

ƒ t ƒ
X = �X

ƒ t ƒƒ t ƒ
�XX

(n - 1)

�X

�XX, Sx

(n - 1)

�t =

X - �X

Sx/1n

�X 7 18.5
�X 6 18.5
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t distribution—the two critical regions—so that if the computed t value lies in
either of the rejection regions, we can reject the null hypothesis.

Now for 27 d.f., as we saw earlier, the 5% critical t values are -2.052 and
+2.052, as shown in Fig. D-1. The probability of obtaining a t value equal to or
smaller than -2.0096 is 2.5 percent and that of obtaining a t value equal to or
greater than +2.0096 is also 2.5 percent, giving the total probability of commit-
ting a type I error of 5 percent.

As Fig. D-1 also shows, the computed t value for our example is about 2.6,
which obviously lies in the right tail critical region of the t distribution. We
therefore reject the null hypothesis that the true average P/E ratio is 18.5. If that
hypothesis were true, we would not have obtained a t value as large as 2.6 (in
absolute terms); the probability of our obtaining such a t value is much smaller
than 5 percent—our prechosen probability of committing a type I error.
Actually, the probability is much smaller than 2.5 percent. (Why?)

In the language of the test of significance we frequently come across the
following two terms:

1. A test (statistic) is statistically significant.
2. A test (statistic) is statistically insignificant.

When we say that a test is statistically significant, we generally mean that we
can reject the null hypothesis. That is, the probability that the observed differ-
ence between the sample value and the hypothesized value is due to mere
chance is small, less than (the probability of a type I error). By the same token,
when we say that a test is statistically insignificant, we do not reject the null
hypothesis. In this case, the observed difference between the sample value and
the hypothesized value could very well be due to sampling variation or due to
mere chance (i.e., the probability of the difference is much greater than ).

When we reject the null hypothesis, we say that our finding is statistically
significant. On the other hand, when we do not reject the null hypothesis, we say
that our finding is not statistically significant.

One or Two-Tailed Test? In all the examples considered so far the alterna-
tive hypothesis was two-sided, or two-tailed. Thus, if the average P/E ratio
were equal to 18.5 under H0, it was either greater than or less than 18.5 under
H1. In this case if the test statistic fell in either tail of the distribution (i.e., the re-
jection region), we rejected the null hypothesis, as is clear from Figure D-7(a).

However, there are occasions when the null and alternative hypotheses
are one-sided, or one-tailed. For example, if for the P/E example we had

and , the alternative hypothesis is one-sided. How
do we test this hypothesis?

The testing procedure is exactly the same as that used in previous cases except
instead of finding out two critical values, we determine only a single critical value
of the test statistic, as shown in Fig. D-7. As this figure illustrates, the probability of
committing a type I error is now concentrated only in one tail of the probability
distribution, t in the present case. For 27 d.f. and percent, the t table will� = 5

H1:�X 7 18.5H0:�X … 18.5

�

�
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show that the one-tailed critical t value is 1.703 (right tail) or -1.703 (left tail), as
shown in Fig. D-7. For our P/E example, as noted before, the computed t value is
about 2.43. Since the t value lies in the critical region of Fig. D-7(b), this t value is
statistically significant. That is, we reject the null hypothesis that the true average
P/E ratio is equal to (or less than) 18.5; the chances of that happening are much
smaller than our prechosen probability of committing a type I error of 5 percent.

Table D-2 summarizes the t test of significance approach to testing the two-
tailed and one-tailed null hypothesis.

In practice, whether we use the confidence interval approach or the test of
significance approach to hypothesis testing is a matter of personal choice and
convenience.

In the confidence interval approach we specify a plausible range of values
(i.e., confidence interval) for the true parameter and find out if the confidence
interval includes the hypothesized value of that parameter. If it does, we do not

APPENDIX D: STATISTICAL INFERENCE: ESTIMATION AND HYPOTHESIS TESTING 505

−2.052 0 2.052
t (27 d.f.)

α = 2.5%

(a)

α = 2.5%

0 1.703
t (27 d.f.)

(b)

α = 5%

0
t (27 d.f.)

(c)

−1.703

95%

95%

t = −3.5

α = 5%
t = −3.5

95%

The t test of significance: (a) Two-tailed; (b) right-tailed; (c) left-tailedFIGURE D-7
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reject that null hypothesis, but if it lies outside the confidence interval, we can
reject the hypothesis.

In the test of significance approach, instead of specifying a range of plausible
values for the unknown parameter, we pick a specific value of the parameter
suggested by the null hypothesis; compute a test statistic, such as the t statistic;
and find its sampling distribution and the probability of obtaining a specific
value of such a test statistic. If this probability is very low, say, less than 
or 1 percent, we reject the particular null hypothesis. If this probability is greater
than the preselected , we do not reject the null hypothesis.

A Word about Accepting or Rejecting a Null Hypothesis In this book we
have used the terminology “reject” or “do not reject” a null hypothesis rather
than “reject” or “accept” a hypothesis. This is in the same spirit as a jury verdict
in a court trial that says whether a defendant is guilty or not guilty rather than
guilty or innocent. The fact that a person is not found guilty does not necessarily
mean that he or she is innocent. Similarly, the fact that we do not reject a null
hypothesis does not necessarily mean that the hypothesis is true, because
another null hypothesis may be equally compatible with the data. For our P/E
example, for instance, from Eq. (D.7) it is obvious any value of between 19.57
and 26.93 would be an “acceptable” hypothesis.

A Word on Choosing the Level of Significance, �, and the p Value

The Achilles heel of the classical approach to hypothesis testing is its arbitrari-
ness in selecting . Although 1, 5, and 10 percent are the commonly used values
of , there is nothing sacrosanct about these values. As noted earlier, unless
we examine the consequences of committing both type I and type II errors, we
cannot make the appropriate choice of . In practice, it is preferable to find the
p value (i.e., the probability value), also known as the exact significance level, of
the test statistic. This may be defined as the lowest significance level at which a null
hypothesis can be rejected.

�

�
�

�X

�

� = 5

506 APPENDIXES

A SUMMARY OF THE t TEST

Null hypothesis Alternative hypothesis Critical region
H0 H1 Reject H0 if

Note: denotes the particular value of assumed under the null hypothesis.
The first subscript on the t statistic shown in the last column is the level of

significance, and the second subscript is the d.f. These are the critical t values.

�X�0

ƒ t ƒ =

X - �0

Sx/1n
 7 t�/2,d.f.�X Z  �0�X = �0

t =

X - �0

Sx/1n
 6  -  t�,d.f.�X 6 �0�X = �0

t =

X - �0

Sx/1n
 7 t�,d.f.�X 7 �0�X = �0

TABLE D-2
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To illustrate, in an application involving 20 d.f. a t value of 3.552 was
obtained. The t table given in Appendix E (Table E-2) shows that the p value for
this t is 0.001 (one-tailed) or 0.002 (two-tailed). That is, this t value is statistically
significant at the 0.001 (one-tailed) or 0.002 (two-tailed) level.

For our P/E example under the null hypothesis that the true P/E ratio is 18.5,
we found that . If the alternative hypothesis is that the true P/E ratio is
greater than 18.5, we find from Table E-1 in Appendix E that is about
.01 This is the p value of the t statistic. We say that this t value is statistically
significant at the 0.01 or 1 percent level. Put differently, if we were to fix

, at that level we can reject the null hypothesis that the true .
Of course, this is a much smaller probability, smaller than the conventional 
value, such as 5 percent. Therefore, we can reject the null hypothesis much more
emphatically than if we were to choose, say, � = 0.05. As a rule, the smaller the
p value, the stronger the evidence against the null hypothesis.

One virtue of quoting the p value is that it avoids the arbitrariness involved in
fixing atartificial levels, suchas1,5,or10percent. If, forexample, inanapplication
the p value of a test statistic (such as t) is, say, 0.135, and if you are willing to accept an

percent, this p value is statistically significant (i.e., you reject the null
hypothesis at this level of significance). Nothing is wrong if you want to take a
chance of being wrong 13.5 percent of the time if you reject the true null hypothesis.

Nowadays several statistical packages routinely compute the p values of
various test statistics, and it is recommended that you report these p values.

The 2 and F Tests of Significance

Besides the t test of significance discussed previously, in the main chapters of
the text we will need tests of significance based on the and the F probability
distributions considered in Appendix C. Since the philosophy of testing is the
same, we will simply present here the actual mechanism with a couple of
illustrative examples; we will present further examples in the main text.

The test of significance In Appendix C (see Example C.14) we showed
that if S2 is the sample variance obtained from a random sample of n observa-
tions from a normal population with variance , then the quantity

(D.21)

That is, the ratio of the sample variance to population variance multiplied by
the d.f. follows the distribution with d.f. If the d.f. and S2 are
known but is not known, we can establish a confidence interval for
the true but unknown using the distribution. The mechanism is similar to
that for establishing confidence intervals on the basis of the t test.

But if we are given a specific value of under H0, we can directly compute
the value from expression (D.21) and test its significance against the critical

values given in Table E-4 in Appendix E. An example follows.�2
�2

�2

�2�2
(1 - �)%�2
(n - 1)�2(n - 1)

(n - 1)a
S2

�2
b ' �2

(n-1)

�2

X2

�2

X

� = 13.5

�

�
�X = 18.5� = 0.01

P(t 7 2.43)
t = 2.43
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Example D.4.

Suppose a random sample of 31 observations from a normal population
gives a (sample) variance of . Test the hypothesis that the true vari-
ance is 9 against the hypothesis that it is different from 9. Use . Here

Answer: Putting the appropriate numbers in expression (D.21), we obtain:
which has 30 d.f. From Table E-4 in Appendix E, we ob-

serve that the probability of obtaining a value of about 40 or higher (for 30 d.f.)
is 0.10 or 10 percent. Since this probability is greater than our level of significance
of 5 percent, we do not reject the null hypothesis that the true variance is 9.

Table D-3 summarizes the test for the various types of null and alternative
hypotheses.

The F Test of Significance In Appendix C we showed that if we have two
randomly selected samples from two normal populations, X and Y, with m and
n observations, respectively, then the variable

(D.22)

follows the F distribution with and d.f., provided the variances of
the two normal populations are equal. In other words, the H0 is . To test this
hypothesis, we use the F test given in Eq. (D.22). An example follows.

Example D.5.

Refer to the S.A.T. math scores for male and female students given in
Examples C.12 and C.15. The variances of these scores were (48.31) for the

�2
X = �2

Y

(n - 1)(m - 1)

 =

g (Xi - X)2
>(m - 1)

g (Yi - Y)2
>(n - 1)

 F =

S2
X

S2
Y

�2

�2
�2

= 30(12>9) = 40,

H0:�2
= 9 and H1:�2

Z 9

� = 5%
S2

= 12
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A SUMMARY OF THE TEST

Null hypothesis Alternative hypothesis Critical region
H0 H1 Reject H0 if

or 

Note: is the value of under the null hypothesis. The first subscript on 
in the last column is the level of significance and the second subscript is the d.f.
These are critical values.�2

�2�2
X�2

0

6 �2
(1-�>2),(n-1)

 
(n - 1)S2

�2
0

7 �2
�>2,(n-1)�2

X Z �2
0�2

X = �2
0

 

(n - 1)S2

�2
0

6 �2
  (1-�),(n-1)�2

X 6 �2
0�2

X = �2
0

 

(n - 1)S2

�2
0

7 �2
�,(n-1)�2

X 7 �2
0�2

X = �2
0

�2TABLE D-3

guj75845_appD.qxd  4/16/09  12:42 PM  Page 508

The Pink Professor

S!D
Underline

S!D
Underline

S!D
Underline



male students and (102.07) for the female students. The number of observa-
tions were 36 or 35 d.f. each. Assuming that these variances represent a sam-
ple from a much larger population of S.A.T. scores, test the hypothesis that
the male and female population variances on the math part of the S.A.T.
scores are the same. Use .
Answer: Here the F value is 102.07/48.31 = 2.1128 (approx.). This F value has
the F distribution with 35 d.f. each. Now from Table  E-3 in Appendix E we
see that for 30 d.f. (35 d.f. is not given in the table), the critical F value at the
1% level of significance is 2.39. Since the observed F value of 2.1128 is less
than 2.39, it is not statistically significant. That is, at , we do not reject
the null hypothesis that the two population variances are the same.

Example D.6.

In the preceding example, what is the p value of obtaining an F value of 2.1128?
Using MINITAB, we can find that for 35 d.f. in the numerator and denomina-
tor, the probability of obtaining an F value of 2.1128 or greater is about 0.01492
or about 10.5 percent. This is the p value of obtaining an F value of as much as
2.1128 or greater. In other words, this is the lowest level of probability at which
we can reject the null hypothesis that the two variances are the same.
Therefore, in this case if we reject the null hypothesis that the two variances are
the same, we are taking the chance of being wrong 1.5 out of 100 times.

Examples D.5 and D.6 suggest a practical strategy. We may fix at some level
(e.g., 1, 5, or 10 percent) and also find out the p value of the test statistic. If the
estimated p value is smaller than the chosen level of significance, we can reject
the null hypothesis under consideration. On the other hand, if the estimated p
value is greater than the preselected level of significance, we may not reject the
null hypothesis.

Table D-4 summarizes the F test.

�

� = 1%

� = 1%
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A SUMMARY OF THE F STATISTIC

Null hypothesis Alternative hypothesis Critical region
H0 H1 Reject H0 if

or 

Notes:
1. and are the two population variances.

2. and are the two sample variances.

3. ndf and ddf denote, respectively, the numerator and denominator d.f.
4. In computing the F ratio, put the larger S 2 value in the numerator.
5. The critical F values are given in the last column. The first subscript of

F is the level of significance and the second subscript is the numerator and
denominator d.f.

6. Note that .F(1-�>2),ndf,d df =
1

F�/2,ddf,ndf
 

S2
2S2

1

�2
2�2

1

6 F(1-�>2),ndf,ddf

 

S2
1

S2
2

7 F�>2,ndf,ddf�2
1 Z �2

2�2
1 = �2

2

 

S2
1

S2
2

7 F�,ndf, ddf�2
1 7 �2

2�2
1 = �2

2

TABLE D-4
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To conclude this appendix, we summarize the steps involved in testing a
statistical hypothesis:

Step 1: State the null hypothesis H0 and the alternative hypothesis H1 (e.g.,
and for our P/E example).

Step 2: Select the test statistic (e.g., ).
Step 3: Determine the probability distribution of the test statistic (e.g.,

.
Step 4: Choose the level of significance , that is, the probability of commit-

ting a type I error. (But keep in mind our discussion about the p value.)
Step 5: Choose the confidence interval or the test of significance approach.

The Confidence Interval Approach Using the probability distribution of
the test statistic, establish a % confidence interval. If this interval (i.e.,
the acceptance region) includes the null-hypothesized value, do not reject the null
hypothesis. But if this interval does not include it, reject the null hypothesis.

The Test of Significance Approach Alternatively, you can follow this
approach by obtaining the relevant test statistic (e.g., the t statistic) under the
null hypothesis and find out the p value of obtaining a specified value of the test
statistic from the appropriate probability distribution (e.g., the t, F, or the dis-
tribution). If this probability is less than the prechosen value of , you can reject
the null hypothesis. But if it is greater than , do not reject it. If you do not want
to preselect , just present the p value of the statistic.

Whether you choose the confidence interval or the test of significance ap-
proach, always keep in mind that in rejecting or not rejecting a null hypothesis you are
taking a chance of being wrong (or p value) percent of the time.

Further uses of the various tests of significance discussed in this appendix
will be illustrated throughout the rest of this book.

D.6 SUMMARY

Estimating population parameters on the basis of sample information and test-
ing hypotheses about them in light of the sample information are the two main
branches of (classical) statistical inference. In this appendix we examined the
essential features of these branches.

KEY TERMS AND CONCEPTS

The key terms and concepts introduced in this appendix are

�

�
�

�
�2

100(1 - �)

�
X ' N(�X, �2

X>n)

X
H1:�X Z 18.5H0:�X = 18.5
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Statistical inference
Parameter estimation

a) point estimation
b) interval estimation

Sampling (probability) distribution

Critical t values
Confidence interval (CI)

a) confidence coefficient
b) random interval (lower limit,

upper limit)
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QUESTIONS

D.1. What is the distinction between each of the following pairs of terms?
a. Point estimator and interval estimator.
b. Null and alternative hypotheses.
c. Type I and type II errors.
d. Confidence coefficient and level of significance.
e. Type II error and power.

D.2. What is the meaning of
a. Statistical inference. e. Critical value of a test.
b. Sampling distribution. f. Level of significance.
c. Acceptance region. g. The p value.
d. Test statistic.

D.3. Explain carefully the meaning of
a. An unbiased estimator. d. A linear estimator.
b. A minimum variance estimator. e. Abest linear unbiased estimator (BLUE).
c. A best, or efficient, estimator.

D.4. State whether the following statements are true, false, or uncertain. Justify your
answers.
a. An estimator of a parameter is a random variable, but the parameter is non-

random, or fixed.
b. An unbiased estimator of a parameter, say, , means that it will always be

equal to .
c. An estimator can be a minimum variance estimator without being unbiased.
d. An efficient estimator means an estimator with minimum variance.
e. An estimator can be BLUE only if its sampling distribution is normal.
f. An acceptance region and a confidence interval for any given problem

means the same thing.

�X

�X
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Level of significance
Probability of committing a type I error
Properties of estimators

a) linearity (linear estimator)
b) unbiasedness (unbiased

estimator)
c) minimum variance (minimum-

variance estimator)
d) efficiency (efficient estimator)
e) best linear unbiased estimator

(BLUE)
f) consistency (consistent

estimator)
Hypothesis testing

a) null hypothesis
b) alternative hypothesis
c) one-sided; one-tailed 

hypothesis

d) two-sided; two-tailed;
composite hypothesis

Confidence interval (approach to
hypothesis testing)
a) acceptance region
b) critical region; region of

rejection
c) critical values

Type I error ( ); level of significance;
confidence coefficient 

Type II error ( )
power of the test 

Tests of significance (approach to
hypothesis testing)
a) Test statistic; t statistic; t test
b) test
c) F test

The p value

�2

(1 - �)
�

(1 - �)
�
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g. Atype I error occurs when we reject the null hypothesis even though it is false.
h. A type II error occurs when we reject the null hypothesis even though it may

be true.
i. As the degrees of freedom (d.f.) increase indefinitely, the t distribution

approaches the normal distribution.
j. The central limit theorem states that the sample mean is always distributed

normally.
k. The terms level of significance and p value mean the same thing.

D.5. Explain carefully the difference between the confidence interval and test of
significance approaches to hypothesis testing.

D.6. Suppose in an example with 40 d.f. that you obtained a t value of 1.35. Since its
p value is somewhere between a 5 and 10 percent level of significance (one-
tailed), it is not statistically very significant. Do you agree with this statement?
Why or why not?

PROBLEMS

D.7. Find the critical Z values in the following cases:
a. (two-tailed test) c. (two-tailed test)
b. (one-tailed test) d. (one-tailed test)

D.8. Find the critical t values in the following cases:
a. n = 4,  (two-tailed test) d. n = 14, (one-tailed test)
b. n = 4,  (one-tailed test) e. n = 60, (two-tailed test)
c. n = 14, (two-tailed test) f. n = 200, (two-tailed test)

D.9. Assume that the per capita income of residents in a country is normally dis-
tributed with mean and variance ($ squared).
a. What is the probability that the per capita income lies between $800 and

$1200?
b. What is the probability that it exceeds $1200?
c. What is the probability that it is less than $800?
d. Is it true that the probability of per capita income exceeding $5000 is

practically zero?
D.10. Continuing with problem D.9, based on a random sample of 1000 members,

suppose that you find the sample mean income, , to be $900.
a. Given that , what is the probability of obtaining such a sample

mean value?
b. Based on the sample mean, establish a 95% confidence interval for and

find out if this confidence interval includes . If it does not, what
conclusions would you draw?

c. Using the test of significance approach, decide whether you want to accept
or reject the hypothesis that . Which test did you use and why?

D.11. The number of peanuts contained in a jar follows the normal distribution with
mean and variance . Quality control inspections over several periods
show that 5 percent of the jars contain less than 6.5 ounces of peanuts and
10 percent contain more than 6.8 ounces.
a. Find and .
b. What percentage of bottles contain more than 7 ounces?

D.12. The following random sample was obtained from a normal population with
mean and variance = 2.

8, 9, 6, 13, 11, 8, 12, 5, 4, 14

�

�2�

�2�

� = $1000

� = $1000
�

� = $1000
X

�2
= 10,000� = $1000

� = 0.05� = 0.01
� = 0.05� = 0.05
� = 0.01� = 0.05

� = 0.02� = 0.05
� = 0.01� = 0.05
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a. Test: against 
b. Test: against 

Note: use .
c. What is the p value in part (a) of this problem?

D.13. Based on a random sample of 10 values from a normal population with mean
and standard deviation , you calculated that and the sample stan-

dard deviation = 4. Estimate a 95% confidence interval for the population
mean. Which probability distribution did you use? Why?

D.14. You are told that . Based on a sample of 25
observations, you found that .
a. What is the sampling distribution of ?
b. What is the probability of obtaining an or less?
c. From your answer in part (b) of this problem, could such a sample value

have come from the preceding population?
D.15. Compute the p values in the following cases:

a.
b.
c. and 20, respectively
d.
Note: If you cannot get an exact answer from the various probability distribu-
tion tables, try to obtain them from a program such as MINITAB or Excel.

D.16. In an application involving 30 d.f. you obtained a t statistic of 0.68. Since this t
value is not statistically significant even at the 10% level of significance, you
can safely accept the relevant hypothesis. Do you agree with this statement?
What is the p value of obtaining such a statistic?

D.17. Let . A random sample of three observations was obtained
from this population. Consider the following estimators of :

a. Is an unbiased estimator of ? What about ?
b. If both estimators are unbiased, which one would you choose? (Hint:

Compare the variances of the two estimators.)
D.18. Refer to Problem C.10 in Appendix C. Suppose a random sample of 10 firms

gave a mean profit of $900,000 and a (sample) standard deviation of $100,000.
a. Establish a 95% confidence interval for the true mean profit in the industry.
b. Which probability distribution did you use? Why?

D.19. Refer to Example C.14 in Appendix C.
a. Establish a 95% confidence interval for the true .
b. Test the hypothesis that the true variance is 8.2.

D.20. Sixteen cars are first driven with a standard fuel and then with Petrocoal, a
gasoline with a methanol additive. The results of the nitrous oxide emissions
(NOx) test are as follows:

Type of fuel Average NOx Standard deviation of NOx

Standard 1.075 0.5796
Petrocoal 1.159 0.6134

Source: Michael O. Finkelstein and Bruce Levin, Statistics for Lawyers,
Springer-Verlag, New York, 1990, p. 230.

�2

N�2�XN�1

N�1 =

X1 + X2 + X3

3
   and   N�2 =

X1

6
+

X2

3
+

X3

2

�X

X ' N(�X, �2
X)

�2
Ú 19, d.f. = 30

F Ú 2.59, d.f. = 3
Z Ú 2.9
t Ú 1.72, d.f. = 24

X = 7.5
X

X = 7.5
X ' N(�X = 8, �2

X = 36)

X = 8��

� = 5%
� 7 5� = 5
� Z 5� = 5
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a. How would you test the hypothesis that the two population standard
deviations are the same?

b. Which test did you use? What are the assumptions underlying that test?
D.21. Show that the estimator given in Eq. (D.14) is biased. (Hint: Expand Eq. (D.14),

and take the expectation of each term, keeping in mind that the expected
value of each Xi is ).

D.22. One-sided confidence interval. Return to the P/E example in this appendix and
look at the two-sided 95% confidence interval given in Eq. (D.7). Suppose you
want to establish a one-sided confidence interval only, either an upper bound
or a lower bound. How would you go about establishing such an interval?
(Hint: Find the one-tail critical t value.)

�X
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